Patents by Inventor James Derderian

James Derderian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11679656
    Abstract: An electric drive unit and a drive axle system having an electric drive unit. The drive axle system also includes a drive shaft and an axle assembly that that is remotely positioned from the electric drive unit. The drive shaft operatively connects the electric drive unit to the axle assembly.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: June 20, 2023
    Assignee: ArvinMeritor Technology, LLC
    Inventors: Arash Atqiaee, James Derderian, Dan S. Ursu
  • Patent number: 11679657
    Abstract: An electric drive unit and a drive axle system having an electric drive unit. The drive axle system also includes a drive shaft and an axle assembly that that is remotely positioned from the electric drive unit. The drive shaft operatively connects the electric drive unit to the axle assembly.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: June 20, 2023
    Assignee: ArvinMeritor Technology, LLC
    Inventors: Arash Atqiaee, James Derderian, Dan S. Ursu
  • Patent number: 8012776
    Abstract: Methods of manufacturing an imaging device package are provided. In accordance with an embodiment a sensor die may be coupled to bond pads on a transparent substrate. Electrically conductive paths comprising bond wires are formed through the bond pads from the sensor die to an outer surface of the imaging device package.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: September 6, 2011
    Assignee: Micron Technology, Inc.
    Inventor: James Derderian
  • Publication number: 20070287216
    Abstract: Methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods are disclosed herein. In one embodiment, a method includes providing a plurality of imaging dies on a microfeature workpiece. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes attaching a plurality of covers to corresponding imaging dies, cutting the microfeature workpiece to singulate the imaging dies, and coupling the singulated dies to a support member. The covers can be attached to the imaging dies before or after the workpiece is cut.
    Type: Application
    Filed: August 15, 2007
    Publication date: December 13, 2007
    Inventors: James Derderian, Bret Street, Eric Mueller
  • Publication number: 20070114646
    Abstract: A die package having an adhesive flow restriction area. In a first embodiment, the adhesive flow restriction area is formed as a trench in a transparent element. A second embodiment has a transparent element with an adhesive flow restriction area formed as a plurality of trenches that extend from one edge of the transparent element to the other edge. A third embodiment has a transparent element with an adhesive flow restriction area formed as a plurality of trenches. A fourth embodiment has a transparent element with an adhesive flow restriction area formed as a protuberance. A fifth embodiment comprises a trench in the die. A sixth embodiment has a die with a plurality of trenches in the die as an adhesive flow restriction area. A seventh embodiment has a die with a protuberance.
    Type: Application
    Filed: January 18, 2007
    Publication date: May 24, 2007
    Inventors: Bret Street, James Derderian, Jeremy Minnich
  • Publication number: 20070117249
    Abstract: Microelectronic imaging units and methods for manufacturing microelectronic imaging units are disclosed herein. In one embodiment, a method includes placing a plurality of singulated imaging dies on a support member. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes disposing a plurality of discrete stand-offs on the support member. The discrete stand-offs are arranged in arrays relative to corresponding imaging dies. The method further includes electrically connecting the external contacts of the imaging dies to corresponding terminals on the support member, and attaching a plurality of covers to corresponding stand-off arrays so that the covers are positioned over the image sensors.
    Type: Application
    Filed: January 17, 2007
    Publication date: May 24, 2007
    Inventors: Frank Hall, William Reeder, Bret Street, James Derderian
  • Publication number: 20070034979
    Abstract: Methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods are disclosed herein. In one embodiment, a method includes coupling a plurality of singulated imaging dies to a support member. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes forming a plurality of stand-offs on corresponding imaging dies before and/or after the imaging dies are singulated and electrically connecting the external contacts of the imaging dies to corresponding terminals on the support member. The individual stand-offs include a portion between adjacent external contacts.
    Type: Application
    Filed: October 19, 2006
    Publication date: February 15, 2007
    Inventors: James Derderian, Bret Street, Eric Mueller
  • Publication number: 20060237822
    Abstract: A semiconductor wafer having a high degree of thinness and exhibiting an enhanced strength state. A layer of tenacious reinforcement material is disposed over a back side of the wafer while in a rough state from backgrinding without prior, conventional polishing or plasma etching of the back side. The thin layer or film of reinforcement material fills grooves, fractures and scratches in the back side of the wafer, enhance the rigidity of the wafer and provide a planar, smooth, back side surface layer. The reinforcement material counteracts internal stresses of the wafer tending to warp, crack and propagate lattice defects in the wafer. The reinforcement material may also be configured to act as a die attach adhesive, may provide an ionic barrier, and may remain as part of the packaging for semiconductor dice singulated from the wafer.
    Type: Application
    Filed: June 6, 2006
    Publication date: October 26, 2006
    Inventors: James Derderian, Nathan Draney
  • Publication number: 20060223207
    Abstract: Methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods are disclosed herein. In one embodiment, a method includes providing a plurality of imaging dies on a microfeature workpiece. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes attaching a plurality of covers to corresponding imaging dies, cutting the microfeature workpiece to singulate the imaging dies, and coupling the singulated dies to a support member. The covers can be attached to the imaging dies before or after the workpiece is cut.
    Type: Application
    Filed: June 7, 2006
    Publication date: October 5, 2006
    Inventors: James Derderian, Bret Street, Eric Mueller
  • Publication number: 20060216850
    Abstract: Methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods are disclosed herein. In one embodiment, a method for manufacturing a plurality of microelectronic imaging units includes placing a plurality of singulated imaging dies on a support member. The individual imaging dies include a first height, an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes electrically connecting the external contacts of the imaging dies to corresponding terminals on the support member and forming a base on the support member between adjacent imaging dies. The base has a second height less than or approximately equal to the first height of the dies. The method further includes attaching a plurality of covers to the base so that the covers are positioned over corresponding image sensors.
    Type: Application
    Filed: June 1, 2006
    Publication date: September 28, 2006
    Inventors: Bret Street, Frank Hall, James Derderian
  • Publication number: 20060046332
    Abstract: Methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods are disclosed herein. In one embodiment, a method includes providing a plurality of imaging dies on a microfeature workpiece. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes attaching a plurality of covers to corresponding imaging dies, cutting the microfeature workpiece to singulate the imaging dies, and coupling the singulated dies to a support member. The covers can be attached to the imaging dies before or after the workpiece is cut.
    Type: Application
    Filed: August 26, 2004
    Publication date: March 2, 2006
    Inventors: James Derderian, Bret Street, Eric Mueller
  • Publication number: 20060035402
    Abstract: Methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods are disclosed herein. In one embodiment, a method for manufacturing a plurality of microelectronic imaging units includes placing a plurality of singulated imaging dies on a support member. The individual imaging dies include a first height, an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes electrically connecting the external contacts of the imaging dies to corresponding terminals on the support member and forming a base on the support member between adjacent imaging dies. The base has a second height less than or approximately equal to the first height of the dies. The method further includes attaching a plurality of covers to the base so that the covers are positioned over corresponding image sensors.
    Type: Application
    Filed: August 10, 2004
    Publication date: February 16, 2006
    Inventors: Bret Street, Frank Hall, James Derderian
  • Publication number: 20060035408
    Abstract: A method for designing a spacer to be used in a stacked multi-chip module includes configuring a spacer layer that is nonconfluent or includes voids. The spacer layer is configured to at least partially space the surface of the semiconductor device apart from another semiconductor device assembled in stacked arrangement therewith. Voids of the nonconfluent spacer may be configured to communicate with an exterior periphery of the layer to facilitate the lateral introduction of adhesive or encapsulant material into the layer and between the adjacent, stacked semiconductor devices.
    Type: Application
    Filed: August 31, 2005
    Publication date: February 16, 2006
    Inventor: James Derderian
  • Publication number: 20060024856
    Abstract: Methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods are disclosed herein. In one embodiment, a method includes coupling a plurality of singulated imaging dies to a support member. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes forming a plurality of stand-offs on corresponding imaging dies before and/or after the imaging dies are singulated and electrically connecting the external contacts of the imaging dies to corresponding terminals on the support member. The individual stand-offs include a portion between adjacent external contacts.
    Type: Application
    Filed: July 28, 2004
    Publication date: February 2, 2006
    Inventors: James Derderian, Bret Street, Eric Mueller
  • Publication number: 20060014313
    Abstract: Microelectronic imaging units and methods for manufacturing microelectronic imaging units are disclosed herein. In one embodiment, a method includes placing a plurality of singulated imaging dies on a support member. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes disposing a plurality of discrete stand-offs on the support member. The discrete stand-offs are arranged in arrays relative to corresponding imaging dies. The method further includes electrically connecting the external contacts of the imaging dies to corresponding terminals on the support member, and attaching a plurality of covers to corresponding stand-off arrays so that the covers are positioned over the image sensors.
    Type: Application
    Filed: July 16, 2004
    Publication date: January 19, 2006
    Inventors: Frank Hall, William Reeder, Bret Street, James Derderian
  • Publication number: 20050156266
    Abstract: A die package having an adhesive flow restriction area. In a first embodiment, the adhesive flow restriction area is formed as a trench in a transparent element. A second embodiment has a transparent element with an adhesive flow restriction area formed as a plurality of trenches that extend from one edge of the transparent element to the other edge. A third embodiment has a transparent element with an adhesive flow restriction area formed as a plurality of trenches. A fourth embodiment has a transparent element with an adhesive flow restriction area formed as a protuberance. A fifth embodiment comprises a trench in the die. A sixth embodiment has a die with a plurality of trenches in the die as an adhesive flow restriction area. A seventh embodiment has a die with a protuberance.
    Type: Application
    Filed: September 1, 2004
    Publication date: July 21, 2005
    Inventors: Bret Street, James Derderian, Jeremy Minnich
  • Publication number: 20050151272
    Abstract: A die package having an adhesive flow restriction area. In a first embodiment, the adhesive flow restriction area is formed as a trench in a transparent element. A second embodiment has a transparent element with an adhesive flow restriction area formed as a plurality of trenches that extend from one edge of the transparent element to the other edge. A third embodiment has a transparent element with an adhesive flow restriction area formed as a plurality of trenches. A fourth embodiment has a transparent element with an adhesive flow restriction area formed as a protuberance. A fifth embodiment comprises a trench in the die. A sixth embodiment has a die with a plurality of trenches in the die as an adhesive flow restriction area. A seventh embodiment has a die with a protuberance.
    Type: Application
    Filed: January 6, 2004
    Publication date: July 14, 2005
    Inventors: Bret Street, James Derderian, Jeremy Minnich
  • Publication number: 20050095812
    Abstract: A semiconductor wafer having a high degree of thinness and exhibiting an enhanced strength state. A layer of tenacious reinforcement material is disposed over a back side of the wafer while in a rough state from backgrinding without prior, conventional polishing or plasma etching of the back side. The thin layer or film of reinforcement material fills grooves, fractures and scratches in the back side of the wafer, enhance the rigidity of the wafer and provide a planar, smooth, back side surface layer. The reinforcement material counteracts internal stresses of the wafer tending to warp, crack and propagate lattice defects in the wafer. The reinforcement material may also be configured to act as a die attach adhesive, may provide an ionic barrier, and may remain as part of the packaging for semiconductor dice singulated from the wafer.
    Type: Application
    Filed: November 4, 2004
    Publication date: May 5, 2005
    Inventors: James Derderian, Nathan Draney
  • Publication number: 20050090107
    Abstract: A method and intermediate structure for improving the thinning and planarity of a wafer back side utilizing planarization material applied to the back side prior to at least one portion of the thinning operation and which is subsequently removed concurrently with the wafer material by one or more suitable thinning or planarization techniques. The planarization material may be applied as a thin layer or film of a hardenable material to the rough, bare back side of a wafer to produce a planar surface when hardened. The planarization material is selected to exhibit a material removal rate approximating the removal rate of the wafer material for a given removal technique such as etching, mechanical abrasion or chemical-mechanical planarization (CMP). This approach to wafer thinning and planarization results in improved process control in the form of uniform material removal rates, reduction in wafer warpage, final surface smoothness and planarity, and even distribution of residual stresses.
    Type: Application
    Filed: November 1, 2004
    Publication date: April 28, 2005
    Inventors: Nathan Draney, James Derderian
  • Publication number: 20050085050
    Abstract: A method and intermediate structure for improving the thinning and planarity of a wafer back side utilizing planarization material applied to the back side prior to at least one portion of the thinning operation and which is subsequently removed concurrently with the wafer material by one or more suitable thinning or planarization techniques. The planarization material may be applied as a thin layer or film of a hardenable material to the rough, bare back side of a wafer to produce a planar surface when hardened. The planarization material is selected to exhibit a material removal rate approximating the removal rate of the wafer material for a given removal technique such as etching, mechanical abrasion or chemical-mechanical planarization (CMP). This approach to wafer thinning and planarization results in improved process control in the form of uniform material removal rates, reduction in wafer warpage, final surface smoothness and planarity, and even distribution of residual stresses.
    Type: Application
    Filed: October 21, 2003
    Publication date: April 21, 2005
    Inventors: Nathan Draney, James Derderian