Patents by Inventor James Doroghazi

James Doroghazi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220389444
    Abstract: Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a toxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated toxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed, and antibodies specifically binding to those amino acid sequences. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in any of SEQ ID NO:1-40, 42, 43, 45-48, 50, 51, 52, 54, 56, 58-64, 66, or 67, or the nucleotide sequence set forth in any of SEQ ID NO:69-106, as well as variants and fragments thereof.
    Type: Application
    Filed: February 9, 2022
    Publication date: December 8, 2022
    Inventors: Gabriel MILLER, Ethan DUNN, James DOROGHAZI, Duane LEHTINEN, Laura SCHOUTEN, Andrew DEBRECHT, Jonathan GIEBEL, Daniel VAKNIN, Xunhai ZHENG, Kathleen PITCHER
  • Patent number: 11286498
    Abstract: Compositions and methods for conferring resistance to a plant pathogen are provided. Compositions comprising a coding sequence for a polypeptide having antifungal activity are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in any of SEQ ID NO:1-67, or the nucleotide sequence set forth in any of SEQ ID NO:69-81, 83-95, or 97-106, as well as variants and fragments thereof.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: March 29, 2022
    Assignee: BASF AGRICULTURAL SOLUTIONS SEED US LLC
    Inventors: Kathleen Pitcher, Gabriel Miller, Ethan Dunn, James Doroghazi, Daniel Vaknin, Xunhai Zheng, Duane Lehtinen, Laura Schouten, Andrew Debrecht, Jonathan Giebel
  • Patent number: 11279946
    Abstract: Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a toxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated toxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed, and antibodies specifically binding to those amino acid sequences. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in any of SEQ ID NO:1-40, 42, 43, 45-48, 50, 51, 52, 54, 56, 58-64, 66, or 67, or the nucleotide sequence set forth in any of SEQ ID NO:69-106, as well as variants and fragments thereof.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: March 22, 2022
    Assignee: BASF ARGICULTURAL SOLUTIONS SEED US LLC
    Inventors: Gabriel Miller, Ethan Dunn, James Doroghazi, Duane Lehtinen, Laura Schouten, Andrew Debrecht, Jonathan Giebel, Daniel Vaknin, Xunhai Zheng, Kathleen Pitcher
  • Patent number: 11091772
    Abstract: Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a toxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated toxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed, and antibodies specifically binding to those amino acid sequences. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:2, or the nucleotide sequence set forth in SEQ ID NO: 1, as well as variants and fragments thereof.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: August 17, 2021
    Assignee: BASF Agricultural Solutions Seed US LLC
    Inventors: James Doroghazi, Duane Lehtinen, Elyse Ann Rodgers-Vieira, Jongmin Baek
  • Publication number: 20200123564
    Abstract: Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a toxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated toxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed, and antibodies specifically binding to those amino acid sequences. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in any of SEQ ID NO:1-40, 42, 43, 45-48, 50, 51, 52, 54, 56, 58-64, 66, or 67, or the nucleotide sequence set forth in any of SEQ ID NO:69-106, as well as variants and fragments thereof.
    Type: Application
    Filed: January 18, 2018
    Publication date: April 23, 2020
    Inventors: Gabriel MILLER, Ethan DUNN, James DOROGHAZI, Duane LEHTINEN, Laura SCHOUTEN, Andrew DEBRECHT, Jonathan GIEBEL, Daniel VAKNIN, Xunhai ZHENG, Kathleen PITCHER
  • Publication number: 20190352665
    Abstract: Compositions and methods for conferring resistance to a plant pathogen are provided. Compositions comprising a coding sequence for a polypeptide having antifungal activity are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in any of SEQ ID NO:1-67, or the nucleotide sequence set forth in any of SEQ ID NO:69-81, 83-95, or 97-106, as well as variants and fragments thereof.
    Type: Application
    Filed: January 18, 2018
    Publication date: November 21, 2019
    Inventors: Kathleen PITCHER, Gabriel MILLER, Ethan DUNN, James DOROGHAZI, Daniel VAKNIN, Xunhai ZHENG, Duane LEHTINEN, Laura SCHOUTEN, Andrew DEBRECHT, Jonathan GIEBEL
  • Publication number: 20190276841
    Abstract: Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a toxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated toxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed, and antibodies specifically binding to those amino acid sequences. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:2, or the nucleotide sequence set forth in SEQ ID NO: 1, as well as variants and fragments thereof.
    Type: Application
    Filed: November 22, 2017
    Publication date: September 12, 2019
    Inventors: James Doroghazi, Duane Lehtinen, Elyse Ann Rodgers-Vieiera, Jongmin Baek