Patents by Inventor James Douglas Lint

James Douglas Lint has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10361022
    Abstract: A low profile, small size and high performance electronic device for use in, e.g., electronic circuits which provides maximum creepage and/or clearance distances. In one embodiment, the device is configured for a small footprint and utilizes two or more windings that require isolation. The exemplary device includes a self-leaded header made from a unitary construction which comprises a generally a box-like support body having a cavity for mounting a circuit element with primary and secondary windings, the support body having a base and a plurality of leads extending generally horizontally outward from the support body adjacent the base, the support body having one side opening on a side with leads permitting the loading of the inductive device in the cavity, and a routing channel residing on the top of the base, so as to maximize the creepage and clearance distance of the electronic device. Shaped-core and other embodiments are also disclosed.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: July 23, 2019
    Assignee: Pulse Electronics, Inc.
    Inventor: James Douglas Lint
  • Publication number: 20190122802
    Abstract: A low profile, small size and high performance electronic device for use in, e.g., electronic circuits which provides maximum creepage and/or clearance distances. In one embodiment, the device is configured for a small footprint and utilizes two or more windings that require isolation. The exemplary device includes a self-leaded header made from a unitary construction which comprises a generally a box-like support body having a cavity for mounting a circuit element with primary and secondary windings, the support body having a base and a plurality of leads extending generally horizontally outward from the support body adjacent the base, the support body having one side opening on a side with leads permitting the loading of the inductive device in the cavity, and a routing channel residing on the top of the base, so as to maximize the creepage and clearance distance of the electronic device. Shaped-core and other embodiments are also disclosed.
    Type: Application
    Filed: September 17, 2018
    Publication date: April 25, 2019
    Inventor: James Douglas Lint
  • Patent number: 10079088
    Abstract: A low profile, small size and high performance electronic device for use in, e.g., electronic circuits which provides maximum creepage and/or clearance distances. In one embodiment, the device is configured for a small footprint and utilizes two or more windings that require isolation. The exemplary device includes a self-leaded header made from a unitary construction which comprises a generally a box-like support body having a cavity for mounting a circuit element with primary and secondary windings, the support body having a base and a plurality of leads extending generally horizontally outward from the support body adjacent the base, the support body having one side opening on a side with leads permitting the loading of the inductive device in the cavity, and a routing channel residing on the top of the base, so as to maximize the creepage and clearance distance of the electronic device. Shaped-core and other embodiments are also disclosed.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: September 18, 2018
    Assignee: Pulse Electronics, Inc.
    Inventor: James Douglas Lint
  • Patent number: 10048293
    Abstract: A low-cost and high-precision current sensing device and methods for use and manufacturing. In one embodiment, the current sensing apparatus comprises a Rogowski-type coil which is manufactured in segments so as to facilitate the manufacturing process. In an exemplary embodiment, the current sensing apparatus segments are asymmetric in shape and/or composition (e.g., bobbin shape, size, and/or winding configuration) so as to account for asymmetries in the magnetic field distribution around a bus bar, or to accommodate its shape in a more compact form factor, and/or to improve the immunity to the effects of an external magnetic field. Methods of manufacturing and using the aforementioned current sensing apparatus are also disclosed.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: August 14, 2018
    Assignee: PULSE ELECTRONICS, INC.
    Inventors: James Douglas Lint, Fuxue Jin, Victor Aldaco, Russell L. Machado
  • Publication number: 20170338022
    Abstract: A low profile, small size and high performance electronic device for use in, e.g., electronic circuits which provides maximum creepage and/or clearance distances. In one embodiment, the device is configured for a small footprint and utilizes two or more windings that require isolation. The exemplary device includes a self-leaded header made from a unitary construction which comprises a generally a box-like support body having a cavity for mounting a circuit element with primary and secondary windings, the support body having a base and a plurality of leads extending generally horizontally outward from the support body adjacent the base, the support body having one side opening on a side with leads permitting the loading of the inductive device in the cavity, and a routing channel residing on the top of the base, so as to maximize the creepage and clearance distance of the electronic device. Shaped-core and other embodiments are also disclosed.
    Type: Application
    Filed: May 8, 2017
    Publication date: November 23, 2017
    Inventor: James Douglas Lint
  • Patent number: 9823274
    Abstract: A low-cost and high-precision current sensing device and methods for use and manufacturing. In one embodiment, the current sensing apparatus comprises a Rogowski-type coil which is manufactured in segments so as to facilitate the manufacturing process. In an exemplary embodiment, the current sensing apparatus segments comprise a number of bobbin elements that are wound and subsequently formed into complex geometric shapes such as torus-like shapes. In an alternative embodiment, bonded windings are utilized which allow the segments to be formed without a bobbin or former. In yet another alternative embodiment, the aforementioned current sensing devices are stacked in groups of two or more. Methods of manufacturing and using the aforementioned current sensing apparatus are also disclosed.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: November 21, 2017
    Assignee: Pulse Electronics, Inc.
    Inventors: James Douglas Lint, Fuxue Jin, Francisco Michel, Victor Aldaco
  • Patent number: 9664711
    Abstract: A low-cost and high-precision current sensing device and methods for use and manufacturing. In one embodiment, the current sensing apparatus comprises a Rogowski-type coil which is manufactured in segments so as to facilitate the manufacturing process. In an exemplary embodiment, the current sensing apparatus segments comprise a number of bobbin elements that are wound and subsequently formed into complex geometric shapes such as torus-like shapes. In an alternative embodiment, bonded windings are utilized which allow the segments to be formed without a bobbin or former. In yet another alternative embodiment, the aforementioned current sensing devices are stacked in groups of two or more. Methods of manufacturing and using the aforementioned current sensing apparatus are also disclosed.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: May 30, 2017
    Assignee: PULSE ELECTRONICS, INC.
    Inventors: James Douglas Lint, Fuxue Jin, Francisco Michel, Victor Aldaco
  • Patent number: 9646755
    Abstract: A low profile and small size electronic device for use in, e.g., electronic circuits which provides maximum creepage and/or clearance distances. In one embodiment, the device is configured for a small footprint and utilizes two or more windings that require isolation. The exemplary device includes a self-leaded header made from a unitary construction which comprises a box-like support body having a cavity for mounting a circuit element, the support body having a base and leads extending generally horizontally outward from the support body adjacent the base, the support body having one side opening on a side with leads permitting the loading of the inductive device in the cavity, and a routing channel residing on the top of the base, so as to maximize the creepage and clearance distance of the electronic device. Shaped-core and other embodiments are also disclosed.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: May 9, 2017
    Assignee: PULSE ELECTRONICS, INC.
    Inventor: James Douglas Lint
  • Publication number: 20160291061
    Abstract: A low-cost and high-precision current sensing device and methods for use and manufacturing. In one embodiment, the current sensing apparatus comprises a Rogowski-type coil which is manufactured in segments so as to facilitate the manufacturing process. In an exemplary embodiment, the current sensing apparatus segments are asymmetric in shape and/or composition (e.g., bobbin shape, size, and/or winding configuration) so as to account for asymmetries in the magnetic field distribution around a bus bar, or to accommodate its shape in a more compact form factor, and/or to improve the immunity to the effects of an external magnetic field. Methods of manufacturing and using the aforementioned current sensing apparatus are also disclosed.
    Type: Application
    Filed: April 4, 2016
    Publication date: October 6, 2016
    Inventors: JAMES DOUGLAS LINT, FUXUE JIN, VICTOR ALDACO, RUSSELL L. MACHADO
  • Publication number: 20160097794
    Abstract: A low-cost and high-precision current sensing device and methods for use and manufacturing. In one embodiment, the current sensing apparatus comprises a Rogowski-type coil which is manufactured in segments so as to facilitate the manufacturing process. In an exemplary embodiment, the current sensing apparatus segments comprise a number of bobbin elements that are wound and subsequently formed into complex geometric shapes such as torus-like shapes. In an alternative embodiment, bonded windings are utilized which allow the segments to be formed without a bobbin or former. In yet another alternative embodiment, the aforementioned current sensing devices are stacked in groups of two or more. Methods of manufacturing and using the aforementioned current sensing apparatus are also disclosed.
    Type: Application
    Filed: October 5, 2015
    Publication date: April 7, 2016
    Inventors: James Douglas Lint, Fuxue Jin, Francisco Michel, Victor Aldaco
  • Patent number: 9304149
    Abstract: A low-cost and high-precision current sensing device and methods for use and manufacturing. In one embodiment, the current sensing apparatus comprises a Rogowski-type coil which is manufactured in segments so as to facilitate the manufacturing process. In an exemplary embodiment, the current sensing apparatus segments are asymmetric in shape and/or composition (e.g., bobbin shape, size, and/or winding configuration) so as to account for asymmetries in the magnetic field distribution around a bus bar, or to accommodate its shape in a more compact form factor, and/or to improve the immunity to the effects of an external magnetic field. Methods of manufacturing and using the aforementioned current sensing apparatus are also disclosed.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: April 5, 2016
    Assignee: PULSE ELECTRONICS, INC.
    Inventors: James Douglas Lint, Fuxue Jin, Victor Aldaco, Russell L. Machado
  • Patent number: 9151782
    Abstract: A low-cost and high-precision current sensing device and methods for use and manufacturing. In one embodiment, the current sensing apparatus comprises a Rogowski-type coil which is manufactured in segments so as to facilitate the manufacturing process. In an exemplary embodiment, the current sensing apparatus segments comprise a number of bobbin elements that are wound and subsequently formed into complex geometric shapes such as torus-like shapes. In an alternative embodiment, bonded windings are utilized which allow the segments to be formed without a bobbin or former. In yet another alternative embodiment, the aforementioned current sensing devices are stacked in groups of two or more. Methods of manufacturing and using the aforementioned current sensing apparatus are also disclosed.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: October 6, 2015
    Assignee: PULSE ELECTRONICS, INC.
    Inventors: James Douglas Lint, Fuxue Jin, Francisco Michel, Victor Aldaco
  • Publication number: 20130320961
    Abstract: A low-cost and high-precision current sensing device and methods for use and manufacturing. In one embodiment, the current sensing apparatus comprises a Rogowski-type coil which is manufactured in segments so as to facilitate the manufacturing process. In an exemplary embodiment, the current sensing apparatus segments are asymmetric in shape and/or composition (e.g., bobbin shape, size, and/or winding configuration) so as to account for asymmetries in the magnetic field distribution around a bus bar, or to accommodate its shape in a more compact form factor, and/or to improve the immunity to the effects of an external magnetic field. Methods of manufacturing and using the aforementioned current sensing apparatus are also disclosed.
    Type: Application
    Filed: March 12, 2013
    Publication date: December 5, 2013
    Inventors: James Douglas Lint, Fuxue Jin, Victor Aldaco, Russell L. Machado
  • Publication number: 20120119864
    Abstract: A low profile and small size electronic device for use in, e.g., electronic circuits which provides maximum creepage and/or clearance distances. In one embodiment, the device is configured for a small footprint and utilizes two or more windings that require isolation. The exemplary device includes a self-leaded header made from a unitary construction which comprises a box-like support body having a cavity for mounting a circuit element, the support body having a base and leads extending generally horizontally outward from the support body adjacent the base, the support body having one side opening on a side with leads permitting the loading of the inductive device in the cavity, and a routing channel residing on the top of the base, so as to maximize the creepage and clearance distance of the electronic device. Shaped-core and other embodiments are also disclosed.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 17, 2012
    Inventor: James Douglas Lint
  • Publication number: 20110148561
    Abstract: A low-cost and high-precision current sensing device and methods for use and manufacturing. In one embodiment, the current sensing apparatus comprises a Rogowski-type coil which is manufactured in segments so as to facilitate the manufacturing process. In an exemplary embodiment, the current sensing apparatus segments comprise a number of bobbin elements that are wound and subsequently formed into complex geometric shapes such as torus-like shapes. In an alternative embodiment, bonded windings are utilized which allow the segments to be formed without a bobbin or former. In yet another alternative embodiment, the aforementioned current sensing devices are stacked in groups of two or more. Methods of manufacturing and using the aforementioned current sensing apparatus are also disclosed.
    Type: Application
    Filed: November 24, 2010
    Publication date: June 23, 2011
    Inventors: James Douglas Lint, Fuxue Jin, Francisco Michel, Victor Aldaco
  • Publication number: 20110025305
    Abstract: A low-cost and high-precision current sensing device and methods for use and manufacturing. In one embodiment, the current sensing apparatus comprises a Rogowski-type coil which is manufactured in segments so as to facilitate the manufacturing process. In an exemplary embodiment, the current sensing apparatus segments comprise a number of bobbin elements that are wound and subsequently formed into complex geometric shapes such as torus-like shapes. In an alternative embodiment, bonded windings are utilized which allow the segments to be formed without a bobbin or former. In yet another alternative embodiment, the aforementioned current sensing devices are stacked in groups of two or more. Methods of manufacturing and using the aforementioned current sensing apparatus are also disclosed.
    Type: Application
    Filed: January 7, 2010
    Publication date: February 3, 2011
    Inventors: James Douglas Lint, Fuxue Jin, Francisco Michel, Victor Aldaco
  • Publication number: 20110025304
    Abstract: A low-cost and high-precision current sensing device and methods for use and manufacturing. In one embodiment, the current sensing apparatus comprises a Rogowski-type coil which is manufactured in segments so as to facilitate the manufacturing process. In an exemplary embodiment, the current sensing apparatus segments comprise a number of bobbin elements that are wound and subsequently formed into complex geometric shapes such as torus-like shapes. In an alternative embodiment, bonded windings are utilized which allow the segments to be formed without a bobbin or former. In yet another alternative embodiment, the aforementioned current sensing devices are stacked in groups of two or more. Methods of manufacturing and using the aforementioned current sensing apparatus are also disclosed.
    Type: Application
    Filed: September 25, 2009
    Publication date: February 3, 2011
    Inventors: James Douglas Lint, Fuxue Jin, Francisco Michel, Victor Aldaco
  • Publication number: 20100214050
    Abstract: A low cost, high performance inductive device for use in, e.g. electronic circuits is disclosed. In one exemplary embodiment, the device includes a two-legged magnetically permeable core optimized for fitting with one or more windings. Preferably, the device is also self-leaded, thereby simplifying its installation and mating to a parent device (e.g., PCB). In another embodiment, one or more low profile magnetically permeable cores are mounted on a surface of the self-leaded magnetically permeable core, preferably with a gap. In yet another embodiment, the aforementioned gap is obviated. In yet another embodiment, spacers are positioned on a surface of the self-leaded magnetically permeable core device to position the low profile magnetically permeable at a predetermined distance from the self-leaded magnetically permeable core. In yet another embodiment, a bead inductor is disclosed comprising a plurality of turns. Methods for manufacturing and utilizing the devices are also disclosed.
    Type: Application
    Filed: August 25, 2008
    Publication date: August 26, 2010
    Inventors: Gil Opina, JR., John Vidallon, Hoi Yean Lim, James Douglas Lint