Patents by Inventor James Douglas Tobias

James Douglas Tobias has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220144996
    Abstract: A catalyst composition comprising at least one compound with a general formula I: wherein A is N—R3, R3 is C1-C8 linear or branched, x=0-6, n and m are each independently 1 to 6, R1 and R2 are each independently C2-C8 alkyl, and R4 and R5 are —CH3 groups; or A=O, x=0-6. n and m are each independently 1 to 6.
    Type: Application
    Filed: February 27, 2020
    Publication date: May 12, 2022
    Applicant: Evonik Operations GmbH
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Timothy Joseph Miller, Mayank Pratap Singh, David VanderSande
  • Patent number: 10759892
    Abstract: The present invention provides trimerization catalyst compositions having a sterically hindered carboxylate salt used in combination with a tertiary amine catalysts having isocyanate reactive groups and methods to produce a polyisocyanurate/polyurethane foam using such trimerization catalyst compositions.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: September 1, 2020
    Assignee: Evonik Operations GmbH
    Inventors: Boxun Leng, Juan Jesus Burdeniuc, James Douglas Tobias, Robert Hoffman, Xiubing Hu
  • Patent number: 10189963
    Abstract: Polyurethane foam compositions and processes to make flexible polyurethane foams are disclosed. Polyurethane foam is produced in the presence of additives comprising guanidine derivatives. Improvements in physical properties such as air flow, dimensional stability, tensile, tear, elongation and foam hardness is observed when these additives are present in polyurethane formulations. In addition, these additives can minimize polymer degradation under humid ageing conditions resulting in foam products with better mechanical properties.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: January 29, 2019
    Assignee: Evonik Degussa GmbH
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller, You-Moon Jeon
  • Patent number: 10125234
    Abstract: A composition and process to make polyisocyanurate or polyurethane foam using a catalyst composition comprising at least one bismuth carboxylate catalyst and one or more co-catalysts selected from the group of alkali metal carboxylates and quaternary ammonium carboxylate salts, such that the resultant foam has improved insulation properties. The polyisocyanurate or polyurethane foams produced by this catalyst composition and method are useful for laminated boardstock, construction panels, appliance insulation, and spray-applied insulation.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: November 13, 2018
    Assignee: Evonik Degussa GmbH
    Inventors: Robert Francis Hoffman, James Douglas Tobias, Jean Louise Vincent, Timothy J. Miller
  • Patent number: 10119002
    Abstract: Polyurethane foam compositions and processes to make flexible polyurethane foams are disclosed. Polyurethane foam is produced in the presence of additives comprising guanidine derivatives. Improvements in physical properties such as air flow, dimensional stability, tensile, tear, elongation and foam hardness is observed when these additives are present in polyurethane formulations. In addition, these additives can minimize polymer degradation under humid ageing conditions resulting in foam products with better mechanical properties.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: November 6, 2018
    Assignee: Evonik Degussa GmbH
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller, You-Moon Jeon
  • Patent number: 10106638
    Abstract: This disclosure is directed to make low density and low amine emissions water blown polyurethane foams using a reactive catalyst composition. The method is particularly useful in the preparation of full water blown, low density polyurethane foams having a density in the range of about 6 to about 16 kg/m3. A catalyst composition comprising at least one non-emissive amine catalyst and tetraalkyl guanidine, the method of employing the catalyst composition and a formulation comprising the catalyst composition are disclosed.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: October 23, 2018
    Assignee: Evonik Degussa GmbH
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller
  • Patent number: 10059823
    Abstract: A composition and process useful to make flexible polyurethane foams and in particular flexible molded polyurethane foams is disclosed. The usage of dipolar aprotic liquids such as DMSO, DMI, sulfolane, N-methyl-acetoacetamide, N,N-dimethylacetoacetamide as well as glycols containing hydroxyl numbers OH#?1100 as cell opening aides for 2-cyanoacetamide or other similar molecules containing active methylene or methine groups to make a polyurethane foam is also disclosed. The advantage of using cell opener aids results in a) no foam shrinkage; b) lower use levels of cell opener; c) foam performance reproducibility d) optimum physical properties. In addition, combining the acid blocked amine catalyst together with the cell opener and the cell opener aid results in a less corrosive mixture as well as provides a method that does not require mechanical crushing for cell opening.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: August 28, 2018
    Assignee: Evonik Degussa GmbH
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller, You-Moon Jeon
  • Patent number: 10023678
    Abstract: A composition and process useful to make flexible polyurethane foams and in particular flexible molded polyurethane foams is disclosed. The usage of dipolar aprotic liquids such as DMSO, DMI, sulfolane, N-methyl-acetoacetamide, N, N-dimethylacetoacetamide as well as glycols containing hydroxyl numbers OH#?1100 as cell opening aides for 2-cyanoacetamide or other similar molecules containing active methylene or methine groups to make a polyurethane foam is also disclosed. The advantage of using cell opener aids results in a) no foam shrinkage; b) lower use levels of cell opener; c) foam performance reproducibility d) optimum physical properties. In addition, combining the acid blocked amine catalyst together with the cell opener and the cell opener aid results in a less corrosive mixture as well as provides a method that does not require mechanical crushing for cell opening.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: July 17, 2018
    Assignee: Evonik Degussa GmbH
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller
  • Patent number: 10023683
    Abstract: The present invention provides a reactive catalyst composition for making a water blown flexible polyurethane foam. The catalyst composition comprises one or more tertiary amine catalysts in combination with (1) 2-methyl-1,3-propanediol or (2) a blend of 2-methyl-1,3-propanediol and a C7+ alkanol. The use of such catalyst composition improves the physical properties of the polyurethane foam.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: July 17, 2018
    Assignee: Evonik Degussa GmbH
    Inventors: Jared Denis Bender, Mark Leo Listemann, James Douglas Tobias
  • Publication number: 20180179318
    Abstract: The present invention provides trimerization catalyst compositions having a sterically hindered carboxylate salt used in combination with a tertiary amine catalysts having isocyanate reactive groups and methods to produce a polyisocyanurate/-polyurethane foam using such trimerization catalyst compositions.
    Type: Application
    Filed: June 18, 2015
    Publication date: June 28, 2018
    Inventors: Boxun Leng, Juan Jesus Burdeniuc, James Douglas Tobias, Robert Hoffman, Xiubing Hu
  • Patent number: 9856355
    Abstract: Methods for preparing polyurethane flexible foam are described, wherein an organic polyisocyanate is reacted with an active hydrogen-containing component such as an organic polyol, in the presence of a urethane catalyst, a blowing agent, optionally a cell opener, and a siloxane-based surfactant composition as a stabilizer for the foam. The siloxane-based surfactant composition comprises a silanol-functionalized organosiloxane having general formula (I), wherein: the R groups are independently a C1-C3 alkyl, phenyl, or —OSi(R)3; provided that at least one R group is a hydroxyl (—OH) bonded directly to any silicon atom and X is an integer from 0-200.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: January 2, 2018
    Assignee: Evonik Degussa GmbH
    Inventors: Jared Denis Bender, Jean Louise Vincent, James Douglas Tobias, Mark Leo Listemann
  • Patent number: 9447223
    Abstract: Polyurethane foam compositions and processes to make flexible polyurethane foams are disclosed. Polyurethane foam is produced in the presence of additives comprising guanidine derivatives. Improvements in physical properties such as air flow, dimensional stability, tensile, tear, elongation and foam hardness is observed when these additives are present in polyurethane formulations. In addition, these additives can minimize polymer degradation under humid ageing conditions resulting in foam products with better mechanical properties.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: September 20, 2016
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller, You-Moon Jeon
  • Patent number: 9334382
    Abstract: A composition and process useful to make flexible polyurethane foams and in particular flexible molded polyurethane foams is disclosed. The usage of dipolar aprotic liquids such as DMSO, DMI, sulfolane, N-methyl-acetoacetamide, N,N-dimethylacetoacetamide as well as glycols containing hydroxyl numbers OH#?1100 as cell opening aides for 2-cyanoacetamide or other similar molecules containing active methylene or methine groups to make a polyurethane foam is also disclosed. The advantage of using cell opener aids results in a) no foam shrinkage; b) lower use levels of cell opener; c) foam performance reproducibility d) optimum physical properties. In addition, combining the acid blocked amine catalyst together with the cell opener and the cell opener aid results in a less corrosive mixture as well as provides a method that does not require mechanical crushing for cell opening.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: May 10, 2016
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, You-Moon Jeon, Renee Jo Keller
  • Publication number: 20160032042
    Abstract: A composition and process useful to make flexible polyurethane foams and in particular flexible molded polyurethane foams is disclosed. The usage of dipolar aprotic liquids such as DMSO, DMI, sulfolane, N-methyl-acetoacetamide, N, N-dimethylacetoacetamide as well as glycols containing hydroxyl numbers OH#?1100 as cell opening aides for 2-cyanoacetamide or other similar molecules containing active methylene or methine groups to make a polyurethane foam is also disclosed. The advantage of using cell opener aids results in a) no foam shrinkage; b) lower use levels of cell opener; c) foam performance reproducibility d) optimum physical properties. In addition, combining the acid blocked amine catalyst together with the cell opener and the cell opener aid results in a less corrosive mixture as well as provides a method that does not require mechanical crushing for cell opening.
    Type: Application
    Filed: September 28, 2015
    Publication date: February 4, 2016
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller
  • Publication number: 20160002426
    Abstract: A composition and process useful to make flexible polyurethane foams and in particular flexible molded polyurethane foams is disclosed. The usage of dipolar aprotic liquids such as DMSO, DMI, sulfolane, N-methyl-acetoacetamide, N,N-dimethylacetoacetamide as well as glycols containing hydroxyl numbers OH#?1100 as cell opening aides for 2-cyanoacetamide or other similar molecules containing active methylene or methine groups to make a polyurethane foam is also disclosed. The advantage of using cell opener aids results in a) no foam shrinkage; b) lower use levels of cell opener; c) foam performance reproducibility d) optimum physical properties. In addition, combining the acid blocked amine catalyst together with the cell opener and the cell opener aid results in a less corrosive mixture as well as provides a method that does not require mechanical crushing for cell opening.
    Type: Application
    Filed: September 11, 2015
    Publication date: January 7, 2016
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller, You-Moon Jeon
  • Publication number: 20160002425
    Abstract: Polyurethane foam compositions and processes to make flexible polyurethane foams are disclosed. Polyurethane foam is produced in the presence of additives comprising guanidine derivatives. Improvements in physical properties such as air flow, dimensional stability, tensile, tear, elongation and foam hardness is observed when these additives are present in polyurethane formulations. In addition, these additives can minimize polymer degradation under humid ageing conditions resulting in foam products with better mechanical properties.
    Type: Application
    Filed: September 11, 2015
    Publication date: January 7, 2016
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller, You-Moon Jeon
  • Patent number: 9145466
    Abstract: A composition and process useful to make flexible polyurethane foams and in particular flexible molded polyurethane foams is disclosed. The usage of dipolar aprotic liquids such as DMSO, DMI, sulfolane, N-methyl-acetoacetamide, N,N-dimethylacetoacetamide as well as glycols containing hydroxyl numbers OH#?1100 as cell opening aides for 2-cyanoacetamide or other similar molecules containing active methylene or methine groups to make a polyurethane foam is also disclosed. The advantage of using cell opener aids results in a) no foam shrinkage; b) lower use levels of cell opener; c) foam performance reproducibility d) optimum physical properties. In addition, combining the acid blocked amine catalyst together with the cell opener and the cell opener aid results in a less corrosive mixture as well as provides a method that does not require mechanical crushing for cell opening.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: September 29, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller
  • Publication number: 20150240023
    Abstract: A composition and process to make polyisocyanurate or polyurethane foam using a catalyst composition comprising at least one bismuth carboxylate catalyst and one or more co-catalysts selected from the group of alkali metal carboxylates and quaternary ammonium carboxylate salts, such that the resultant foam has improved insulation properties. The polyisocyanurate or polyurethane foams produced by this catalyst composition and method are useful for laminated boardstock, construction panels, appliance insulation, and spray-applied insulation.
    Type: Application
    Filed: February 26, 2015
    Publication date: August 27, 2015
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Robert Francis Hoffman, James Douglas Tobias, Jean Louise Vincent, Timothy J. Miller
  • Patent number: 8618014
    Abstract: Catalyst compositions for use in forming polyurethane products include a gelling catalyst, a trimerization catalyst, and a cure accelerator. The gelling catalyst is a tertiary amine, mono(tertiary amino) urea, bis(tertiary amino) urea, or a combination of any of these. Any known trimerization catalyst may be used. The cure accelerator may be a diol having at least one primary hydroxyl group, and having from five to 17 chain backbone atoms chosen from carbon, oxygen, or both between the hydroxyl groups, provided that at least five of the backbone atoms are carbon. Alternatively or in addition, the cure accelerator may be a polyol having three or more hydroxyl groups, at least two of which are primary, and having molecular weights between 90 g/mole and 400 g/mole. Delayed initiation of the polyurethane-forming reaction and/or reduced demold time for producing the polyurethane part can be obtained by using these catalyst compositions.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: December 31, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gary Dale Andrew, Mark Leo Listemann, Patrick Gordon Stehley, James Douglas Tobias, John William Miller
  • Patent number: 8552078
    Abstract: A composition for making a polyurethane foam includes a non-fugitive tertiary amine urethane catalyst and an alkylated polyamine crosslinking additives. Foams prepared from the reaction of a polyol and an organic isocyanate in the presence of these ingredients show improved resistance to deterioration of physical properties upon humid ageing.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: October 8, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gamini Ananda Vedage, Juan Jesus Burdeniuc, Allen Robert Arnold, Jr., James Douglas Tobias