Patents by Inventor James E. Farnsworth

James E. Farnsworth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11105715
    Abstract: There is disclosed a field calibratable particle sensor solution in a low-cost, very compact form factor. This makes a low-cost sensor more accurate for low-concentration pollution measurements and decreases the cost of pollution measurement systems having a wide geographic coverage. In a related embodiment, the invention illustrates a method and system to remotely and automatically calibrate one or more of the low cost sensors disclosed herein as well as other commercially available sensors (such as optical particle counters, photometers etc.) against a reference instrument (such as a beta attenuation monitor) which may or may not be physically located in the same place as the individual sensors. The method may require minimum (or no) user interaction and the calibration period is adjustable periodically.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: August 31, 2021
    Assignee: TSI, Incorporated
    Inventors: Hee-Siew Han, James E. Farnsworth, Robert Caldow
  • Patent number: 10620079
    Abstract: In some aspects, waterjet cutting pressurization systems can include a water pump: (i) having a pressurization chamber and (ii) having a high-pressure water seal maintaining water pressure within the chamber; and a leak detector in fluid communication with the high-pressure water seal and configured to monitor a leak rate of a fluid from the high-pressure water seal.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: April 14, 2020
    Assignee: Hypertherm, Inc.
    Inventors: James E. Farnsworth, Cedar J. Vandergon, Jon W. Lindsay
  • Publication number: 20190107469
    Abstract: There is disclosed a field calibratable particle sensor solution in a low-cost, very compact form factor. This makes a low-cost sensor more accurate for low-concentration pollution measurements and decreases the cost of pollution measurement systems having a wide geographic coverage. In a related embodiment, the invention illustrates a method and system to remotely and automatically calibrate one or more of the low cost sensors disclosed herein as well as other commercially available sensors (such as optical particle counters, photometers etc.) against a reference instrument (such as a beta attenuation monitor) which may or may not be physically located in the same place as the individual sensors. The method may require minimum (or no) user interaction and the calibration period is adjustable periodically.
    Type: Application
    Filed: July 23, 2018
    Publication date: April 11, 2019
    Inventors: Hee-Siew Han, James E. Farnsworth, Robert Caldow
  • Patent number: 10041862
    Abstract: There is disclosed a field calibratable particle sensor solution in a low-cost, very compact form factor. This makes a low-cost sensor more accurate for low-concentration pollution measurements and decreases the cost of pollution measurement systems having a wide geographic coverage. In a related embodiment, the invention illustrates a method and system to remotely and automatically calibrate one or more of the low cost sensors disclosed herein as well as other commercially available sensors (such as optical particle counters, photometers etc.) against a reference instrument (such as a beta attenuation monitor) which may or may not be physically located in the same place as the individual sensors. The method may require minimum (or no) user interaction and the calibration period is adjustable periodically.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: August 7, 2018
    Assignee: TSI, Incorporated
    Inventors: Hee-Siew Han, James E. Farnsworth, Robert Caldow
  • Publication number: 20180045597
    Abstract: In some aspects, waterjet cutting pressurization systems can include a water pump: (i) having a pressurization chamber and (ii) having a high-pressure water seal maintaining water pressure within the chamber; and a leak detector in fluid communication with the high-pressure water seal and configured to monitor a leak rate of a fluid from the high-pressure water seal.
    Type: Application
    Filed: August 14, 2017
    Publication date: February 15, 2018
    Inventors: James E. Farnsworth, Cedar J. Vandergon, Jon W. Lindsay
  • Publication number: 20170322123
    Abstract: There is disclosed a field calibratable particle sensor solution in a low-cost, very compact form factor. This makes a low-cost sensor more accurate for low-concentration pollution measurements and decreases the cost of pollution measurement systems having a wide geographic coverage. In a related embodiment, the invention illustrates a method and system to remotely and automatically calibrate one or more of the low cost sensors disclosed herein as well as other commercially available sensors (such as optical particle counters, photometers etc.) against a reference instrument (such as a beta attenuation monitor) which may or may not be physically located in the same place as the individual sensors. The method may require minimum (or no) user interaction and the calibration period is adjustable periodically.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 9, 2017
    Inventors: Hee-Siew Han, James E. Farnsworth, Robert Caldow
  • Patent number: 9726579
    Abstract: There is disclosed a field calibratable particle sensor solution in a low-cost, very compact form factor. This makes a low-cost sensor more accurate for low-concentration pollution measurements and decreases the cost of pollution measurement systems having a wide geographic coverage. In a related embodiment, the invention illustrates a method and system to remotely and automatically calibrate one or more of the low cost sensors disclosed herein as well as other commercially available sensors (such as optical particle counters, photometers etc.) against a reference instrument (such as a beta attenuation monitor) which may or may not be physically located in the same place as the individual sensors. The method may require minimum (or no) user interaction and the calibration period is adjustable periodically.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: August 8, 2017
    Assignee: TSI, Incorporated
    Inventors: Hee-Siew Han, James E. Farnsworth, Robert Caldow
  • Publication number: 20160153884
    Abstract: There is disclosed a field calibratable particle sensor solution in a low-cost, very compact form factor. This makes a low-cost sensor more accurate for low-concentration pollution measurements and decreases the cost of pollution measurement systems having a wide geographic coverage. In a related embodiment, the invention illustrates a method and system to remotely and automatically calibrate one or more of the low cost sensors disclosed herein as well as other commercially available sensors (such as optical particle counters, photometers etc.) against a reference instrument (such as a beta attenuation monitor) which may or may not be physically located in the same place as the individual sensors. The method may require minimum (or no) user interaction and the calibration period is adjustable periodically.
    Type: Application
    Filed: December 30, 2014
    Publication date: June 2, 2016
    Inventors: Hee-Siew Han, James E. Farnsworth, Robert Caldow
  • Patent number: 8534116
    Abstract: A system for measuring size segregated mass concentration of an aerosol. The system includes an electromagnetic radiation source with beam-shaping optics for generation of a beam of electromagnetic radiation, an inlet sample conditioner with adjustable cut-size that selects particles of a specific size range, and an inlet nozzle for passage of an aerosol flow stream. The aerosol flow stream contains particles intersecting the beam of electromagnetic radiation to define an interrogation volume, and scatters the electromagnetic radiation from the interrogation volume. The system also includes a detector for detection of the scattered electromagnetic radiation an integrated signal conditioner coupled to the detector and generating a photometric output, and a processor coupled with the conditioner for conversion of the photometric output and cut-size to a size segregated mass distribution.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 17, 2013
    Assignee: PNC Bank, National Association
    Inventors: Xiaoliang Wang, Jugal Agarwal, George J. Chancellor, James Evanstad, Anthony E Hase, Sreenath Avula, James E. Farnsworth, David A Lieder
  • Publication number: 20120012744
    Abstract: A system for measuring size segregated mass concentration of an aerosol. The system includes an electromagnetic radiation source with beam-shaping optics for generation of a beam of electromagnetic radiation, an inlet sample conditioner with adjustable cut-size that selects particles of a specific size range, and an inlet nozzle for passage of an aerosol flow stream. The aerosol flow stream contains particles intersecting the beam of electromagnetic radiation to define an interrogation volume, and scatters the electromagnetic radiation from the interrogation volume. The system also includes a detector for detection of the scattered electromagnetic radiation an integrated signal conditioner coupled to the detector and generating a photometric output, and a processor coupled with the conditioner for conversion of the photometric output and cut-size to a size segregated mass distribution.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 19, 2012
    Applicant: TSI, INCORPORATED
    Inventors: Xiaoliang Wang, Jugal K. Agarwal, George John Chancellor, James Evanstad, Anthony E. Hase, Sreenath Avula, James E. Farnsworth, David A. Lieder
  • Patent number: 8047055
    Abstract: A system for measuring size segregated mass concentration of an aerosol. The system includes an electromagnetic radiation source with beam-shaping optics for generation of a beam of electromagnetic radiation, an inlet sample conditioner with adjustable cut-size that selects particles of a specific size range, and an inlet nozzle for passage of an aerosol flow stream. The aerosol flow stream contains particles intersecting the beam of electromagnetic radiation to define an interrogation volume, and scatters the electromagnetic radiation from the interrogation volume. The system also includes a detector for detection of the scattered electromagnetic radiation an integrated signal conditioner coupled to the detector and generating a photometric output, and a processor coupled with the conditioner for conversion of the photometric output and cut-size to a size segregated mass distribution.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: November 1, 2011
    Assignee: TSI, Incorporated
    Inventors: Xiaoliang Wang, Jugal K. Agarwal, George John Chancellor, James Evanstad, Anthony E. Hase, Sreenath Avula, James E. Farnsworth, David A. Lieder
  • Publication number: 20100288921
    Abstract: A system for measuring size segregated mass concentration of an aerosol. The system includes an electromagnetic radiation source with beam-shaping optics for generation of a beam of electromagnetic radiation, an inlet sample conditioner with adjustable cut-size that selects particles of a specific size range, and an inlet nozzle for passage of an aerosol flow stream. The aerosol flow stream contains particles intersecting the beam of electromagnetic radiation to define an interrogation volume, and scatters the electromagnetic radiation from the interrogation volume. The system also includes a detector for detection of the scattered electromagnetic radiation an integrated signal conditioner coupled to the detector and generating a photometric output, and a processor coupled with the conditioner for conversion of the photometric output and cut-size to a size segregated mass distribution.
    Type: Application
    Filed: February 12, 2010
    Publication date: November 18, 2010
    Inventors: Xiaoliang Wang, Jugal K. Agarwal, George John Chancellor, James Evanstad, Anthony E. Hase, Sreenath Avula, James E. Farnsworth, David A. Lieder