Patents by Inventor James E. Fesmire

James E. Fesmire has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10656109
    Abstract: A test apparatus for evaluating thermal properties of a test specimen across a wide range of thermal conductivities and temperature ranges using a flat plate cup cryostat. The test apparatus includes: a heater assembly having an upper surface to receive a test specimen; a cold plate positioned on top of the test specimen; a vessel comprising an outer cylindrical tube closed on a bottom end by the cold plate; an inner cylindrical tube concentrically received in an upper portion of the outer cylindrical tube above the vessel to vent the vessel; insulation material surrounding at least the heater assembly, test specimen, cold plate, and vessel; a sensor that detects boiloff or evaporation rate of liquid from the vessel vented from the inner cylindrical tube; temperature sensors positioned to detect temperatures of the heater assembly and the cold plate; and a data recording device to record the boiloff or evaporation rates and temperature values.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: May 19, 2020
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: James E. Fesmire, Wesley L. Johnson, Jared P. Sass
  • Patent number: 10431355
    Abstract: The feed-through assembly provides for the conveyance of a feed element from one boundary environment to another. The feed-through assembly includes the following components (from bottom to top) each with an axially extending aperture through which at least one feed element passes: lower compression member; packing stack including a plurality of packing buttons; and upper compression member. The plurality of packing buttons are made from expanded polytetrafluoroethylene (ePTFE) foam material (e.g., GORE-TEX®). A portion of the feed element is sealed within the packing stack including the plurality of packing buttons after it is compressed between the two compression members. The feed-through assembly is very cost effective and easy to make, but provides solutions to sealing problems under severe conditions or for extremely demanding requirements.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: October 1, 2019
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: James E. Fesmire, Adam M. Swanger
  • Publication number: 20190056064
    Abstract: A cryogenic flux capacitor (CFC) storage system includes a CFC core module having an inner container comprising one of: (i) a vessel; and (ii) a membrane that contains a substrate material. Fluid paths in the substrate material distribute fluid during charging and discharging. Nanoporous media is attached to the substrate material that receives fluid via physical adsorption during charging. A thermally conductive support layer maintains position of the substrate material within the inner container. The thermally conductive support layer conductively distributes thermal energy within the inner container. An outer insulating container encompasses the CFC core module. At least one fluid conduit directs transfers of the fluid in a gaseous or liquid state from a source subsystem into the CFC core module during charging and the fluid in a gaseous state out of the CFC core module during discharging to a destination subsystem that utilizes the fluid in a gaseous state.
    Type: Application
    Filed: August 17, 2018
    Publication date: February 21, 2019
    Inventors: Adam M. Swanger, James E. Fesmire
  • Patent number: 10024812
    Abstract: A test apparatus for thermal energy measurement of disk-shaped test specimens has a cold mass assembly locatable within a sealable chamber with a guard vessel having a guard chamber to receive a liquid fluid and a bottom surface to contact a cold side of a test specimen, and a test vessel having a test chamber to receive a liquid fluid and encompassed on one side by a center portion of the bottom surface shared with the guard vessel. A lateral wall assembly of the test vessel is closed by a vessel top, the lateral wall assembly comprising an outer wall and an inner wall having opposing surfaces that define a thermal break including a condensable vapor pocket to inhibit heat transfer through the lateral wall from the guard vessel to the test vessel. A warm boundary temperature surface is in thermal communication with a lower surface of the test specimen.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: July 17, 2018
    Assignee: The United States of America as Represented by the Administrator of NASA
    Inventors: James E. Fesmire, Wesley L. Johnson
  • Patent number: 9982661
    Abstract: A thermal management system includes a first substrate having a first conductive inner surface. A second substrate has a second conductive inner surface. A connecting structure is attached to the first and second substrates to space apart the first and second inner surfaces defining an insulating space for a single architecture. One or more passively-acting elements are attached to the inner surface of at least one substrate and including a shape memory material such as a shape memory alloy (SMA). The SMA passively reacts to the temperature of the first substrate by thermally contacting or separating from the second inner surface of the second substrate for the control of the conduction of heat energy in either direction.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: May 29, 2018
    Assignee: The United States of America as Represented by the Administrator of NASA
    Inventors: Steven Trigwell, James E. Fesmire, Tracy L. Gibson, Martha K. Williams
  • Patent number: 9777126
    Abstract: The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: October 3, 2017
    Assignee: The United States of America as Represented by the Administrator of NASA
    Inventors: Martha K. Williams, Trent M. Smith, James E. Fesmire, Luke B. Roberson, LaNetra M. Clayton
  • Patent number: 9678025
    Abstract: A test apparatus for thermal energy measurement of disk-shaped test specimens has a cold mass assembly locatable within a sealable chamber with a guard vessel having a guard chamber to receive a liquid fluid and a bottom surface to contact a cold side of a test specimen, and a test vessel having a test chamber to receive a liquid fluid and encompassed on one side by a center portion of the bottom surface shared with the guard vessel. A lateral wall assembly of the test vessel is closed by a vessel top, the lateral wall assembly comprising an outer wall and an inner wall having opposing surfaces that define a thermal break including a condensable vapor pocket to inhibit heat transfer through the lateral wall from the guard vessel to the test vessel. A warm boundary temperature surface is in thermal communication with a lower surface of the test specimen.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: June 13, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: James E. Fesmire, Wesley L. Johnson
  • Patent number: 9617069
    Abstract: The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: April 11, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: James E. Fesmire
  • Patent number: 9488607
    Abstract: A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). An inner vessel receives liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including upper and lower guard chambers and middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid allowing easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: November 8, 2016
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: James E. Fesmire, Adam G. Dokos
  • Publication number: 20140255628
    Abstract: The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 11, 2014
    Inventor: James E. Fesmire
  • Publication number: 20140079089
    Abstract: A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). The apparatus includes an inner vessel for receiving a liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the upper and lower guard chambers and a middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid to allow easy removal of the cold mass.
    Type: Application
    Filed: November 26, 2013
    Publication date: March 20, 2014
    Inventors: James E. Fesmire, Adam G. Dokos
  • Patent number: 8628238
    Abstract: A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). The apparatus includes an inner vessel for receiving a liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the upper and lower guard chambers and a middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid to allow easy removal of the cold mass.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: January 14, 2014
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: James E. Fesmire, Adam G. Dokos
  • Patent number: 7977411
    Abstract: The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N2 or H2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: July 12, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Martha K. Williams, Trent M. Smith, James E. Fesmire, Erik S. Weiser, Jared P. Sass
  • Publication number: 20100318316
    Abstract: A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). The apparatus includes an inner vessel for receiving a liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the upper and lower guard chambers and a middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid to allow easy removal of the cold mass.
    Type: Application
    Filed: June 11, 2010
    Publication date: December 16, 2010
    Applicant: United States of America as Represented by the Administrator of the National Aeronautics and Spac
    Inventors: James E. Fesmire, Adam G. Dokos
  • Publication number: 20100280171
    Abstract: The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.
    Type: Application
    Filed: July 12, 2010
    Publication date: November 4, 2010
    Applicant: United States of America as Rep. by the Administrator of the National Aeronautics & Space
    Inventors: Martha K. Williams, Trent M. Smith, James E. Fesmire, Luke B. Roberson, LaNetra M. Clayton
  • Publication number: 20100275617
    Abstract: The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N2 or H2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.
    Type: Application
    Filed: July 13, 2010
    Publication date: November 4, 2010
    Applicants: Space Administration
    Inventors: Martha K. Williams, Trent M. Smith, James E. Fesmire, Erik S. Weiser, Jared P. Sass
  • Publication number: 20100279044
    Abstract: The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.
    Type: Application
    Filed: July 12, 2010
    Publication date: November 4, 2010
    Applicant: USA as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Martha K. WILLIAMS, Trent M. SMITH, James E. FESMIRE, Luke B. ROBERSON, LaNetra M. CLAYTON
  • Patent number: 7790787
    Abstract: The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: September 7, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Martha K. Williams, Trent M. Smith, James E. Fesmire, Luke B. Roberson, LaNetra M. Clayton
  • Patent number: 7781492
    Abstract: The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N2 or H2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: August 24, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Martha K. Williams, Trent M. Smith, James E. Fesmire, Erik S. Weiser, Jared P. Sass
  • Publication number: 20070259169
    Abstract: The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.
    Type: Application
    Filed: April 26, 2007
    Publication date: November 8, 2007
    Applicant: United States of America as Represented by the Administrator of the National Aeronautics and Spac
    Inventors: Martha K. WILLIAMS, Trent M. SMITH, James E. FESMIRE, Luke B. ROBERSON, LaNetra M. CLAYTON