Patents by Inventor James E. Harrison

James E. Harrison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10207505
    Abstract: A method of fabricating a charging device for an inkjet printing system includes providing a charging device body having at least one conductive trace passing through the interior of the charging device body connecting between a charging face of the charging device body and an interconnection region remote from the charging face. A portion of the at least one conductive trace is exposed on the charging face. A vapor deposition process is used to deposit a conductive base layer through a shadow mask onto the charging face, wherein the deposited conductive base layer contacts the exposed portion of at least one conductive trace. One or more conductive metallic layers are plated onto the deposited conductive base layer to form a charging electrode.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: February 19, 2019
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Robert J. Simon, Michael Frank Baumer, James E. Harrison, Jr., Brian George Morris, Charles D. Rike
  • Patent number: 8419175
    Abstract: A printing system includes a filter, a printhead including nozzles through which liquid is emitted, and a liquid supply system in liquid communication with the printhead through the filter. The filter, an electroformed metal structure, includes a plurality of first recesses, a plurality of second recesses, a plurality of first pores, and a plurality of second pores. Each of the plurality of first recesses includes a first recess diameter and a first recess center-to-center spacing relative to each other. Each of the plurality of second recesses includes a second recess diameter and a second recess center-to-center spacing relative to each other. Each of the plurality of first pores is in fluid communication with a corresponding one of the plurality of first recesses and each of the plurality of second pores is in fluid communication with a corresponding one of the plurality of second recesses.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: April 16, 2013
    Assignee: Eastman Kodak Company
    Inventors: Jason J. Graham, James E. Harrison, Jr., Lawrence A. Wellner
  • Publication number: 20130044166
    Abstract: A printing system includes a filter, a printhead including nozzles through which liquid is emitted, and a liquid supply system in liquid communication with the printhead through the filter. The filter, an electroformed metal structure, includes a plurality of first recesses, a plurality of second recesses, a plurality of first pores, and a plurality of second pores. Each of the plurality of first recesses includes a first recess diameter and a first recess center-to-center spacing relative to each other. Each of the plurality of second recesses includes a second recess diameter and a second recess center-to-center spacing relative to each other. Each of the plurality of first pores is in fluid communication with a corresponding one of the plurality of first recesses and each of the plurality of second pores is in fluid communication with a corresponding one of the plurality of second recesses.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Inventors: Jason J. Graham, James E. Harrison, JR., Lawrence A. Wellner
  • Publication number: 20130043184
    Abstract: An electroformed metal filter structure includes a plurality of first recesses, a plurality of second recesses, a plurality of first pores, and a plurality of second pores. Each of the plurality of first recesses includes a first recess diameter and a first recess center-to-center spacing relative to each other. Each of the plurality of second recesses includes a second recess diameter and a second recess center-to-center spacing relative to each other. Each of the plurality of first pores is in fluid communication with a corresponding one of the plurality of first recesses and each of the plurality of second pores is in fluid communication with a corresponding one of the plurality of second recesses. The first recess diameter is not equal to the second recess diameter and the first recess center-to-center spacing is not equal to the second recess center-to-center spacing.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Inventors: Jason J. Graham, James E. Harrison, JR., Lawrence A. Wellner
  • Publication number: 20130043127
    Abstract: A mandrel, suitable for use when producing an electroform metal structure including, for example, a filter, includes a conductive material layer. A plurality of first photoresist pegs is located in a first area of the conductive material layer. Each of the plurality of first photoresist pegs includes a first diameter and a first center-to-center spacing relative to each other. A plurality of second photoresist pegs is located in a second area of the conductive material layer. Each of the plurality of second photoresist pegs includes a second diameter and a second center-to-center spacing. The first diameter is greater than the second diameter and the first center-to-center spacing is greater than the second center-to-center spacing.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Inventors: Jason J. Graham, James E. Harrison, JR., Lawrence A. Wellner
  • Patent number: 8104170
    Abstract: A charge plate and a method for fabricating a charge plate for an ink jet printhead includes the steps of removing portions of conductive material from a dimensionally stable substrate with a coating of conductive material to form at least a first and second electrode on a first face with a first space between the first and second electrodes, removing portions of conductive material from the dimensionally stable substrate with a coating of conductive material to form a first electrode extension which engages the first electrode on the conductive charging face, and a second electrode extension which engages the second electrode on the conductive charging face, whereby the first and second electrode extensions are electrically isolated from each other, additionally forming a first space between the electrode extensions, which connects with the first space between the electrode extensions.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: January 31, 2012
    Assignee: Eastman Kodak Company
    Inventors: Brian G. Morris, Richard W. Sexton, Michael F. Baumer, James E. Harrison, Jr.
  • Patent number: 7584539
    Abstract: A method of manufacturing an inkjet printer component and an inkjet printer component electropolishing device are provided. The method includes positioning an electrode in a fluid passageway of an inkjet printer component, the electrode including a conductive face and a nonconductive face; polishing a side of the fluid passageway by: biasing the nonconductive face of the electrode toward a side of the fluid passageway such that the conductive face of the electrode does not contact any portion of the fluid passageway; providing an electrolytic fluid to the fluid passageway of the inkjet printer component; and applying a voltage between the electrode and the inkjet printer component.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: September 8, 2009
    Assignee: Eastman Kodak Company
    Inventors: James E. Harrison, Francis T. Galbraith, Kevin P. Egan, Bruce A. Bowling, Richard W. Sexton
  • Patent number: 7552534
    Abstract: An integrated orifice array plate and a charge plate is fabricated for a continuous ink jet print head by providing an electrically non-conductive orifice plate substrate having first and second opposed sides and an array of predetermined spaced-apart orifice positions. A plating seed layer is applied to the first of the opposed sides of the substrate, and an array of orifices is formed through the orifice plate substrate at the predetermined orifice positions. The orifices extend between the opposed sides. The plating seed layer is etched, leaving a portion of the plating seed layer adjacent to each of the predetermined orifice positions. A charge electrode is plated onto each of the portions of the plating seed layer.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: June 30, 2009
    Assignee: Eastman Kodak Company
    Inventors: Shan Guan, Michael F. Baumer, Richard W. Sexton, James E. Harrison, Jr.
  • Patent number: 7540589
    Abstract: An integrated orifice array plate and a charge plate are fabricated for a continuous ink jet print head by producing an orifice plate and a charge plate, and by bonding the two together. The orifice plate is produced by providing an electrically non-conductive orifice plate substrate, forming a recessed-surface trench of predetermined depth into one of two opposed sides of the orifice plate substrate, and forming an array of orifices through the orifice plate substrate from the recessed surface of the trench to the other of the two opposed sides wherein the orifices are spaced apart by a predetermined distance. The charge plate is produced by providing an electrically non-conductive orifice plate substrate of predetermined thickness, and forming a plurality of charging leads on one of two opposed sides of the orifice plate substrate. The charge leads are spaced apart by said predetermined distance.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: June 2, 2009
    Assignee: Eastman Kodak Company
    Inventors: Shan Guan, Michael F. Baumer, Richard W. Sexton, James E. Harrison, Jr.
  • Publication number: 20090126626
    Abstract: A method for fabricating an orifice plate with high density arrays of nozzles entails disposing a photoresist layer on a glass with a metalized layer forming a photomask blank and patterning the photomask blank with one or more openings. Second openings are formed by etching through the initial openings into the photoresist layer. The photoresist layer is removed and a second photoresist layer is added to the formed patterned structure forming a mandrel. One or more rings are patterned onto the mandrel. Each ring has an outer diameter larger than the diameter of the second openings and an inner diameter smaller than the diameter of the second openings. The mandrel with formed rings is plated with a metal forming an orifice plate.
    Type: Application
    Filed: January 14, 2009
    Publication date: May 21, 2009
    Inventors: Richard W. Sexton, James E. Harrison, JR., Jeanine A. Clark, Margene C. Howell
  • Patent number: 7501228
    Abstract: A method for fabricating an orifice plate with high density arrays of nozzles entails disposing a photoresist layer on a glass with a metalized layer forming a photomask blank and patterning the photomask blank with one or more openings. Second openings are formed by etching through the initial openings into the photoresist layer. The photoresist layer is removed and a second photoresist layer is added to the formed patterned structure forming a mandrel. One or more rings are patterned onto the mandrel. Each ring has an outer diameter larger than the diameter of the second openings and an inner diameter smaller than the diameter of the second openings. The mandrel with formed rings is plated with a metal forming an orifice plate. The orifice plate is separated from the patterned mandrel, forming an orifice plate with a high density array of nozzles.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: March 10, 2009
    Assignee: Eastman Kodak Company
    Inventors: Richard W. Sexton, James E. Harrison, Jr., Jeanine A. Clark, Margene C. Howell
  • Patent number: 7437820
    Abstract: A charge plate is fabricated for a continuous ink jet printer print head by applying an etch-stop to one of the opposed sides of an electrically non-conductive substrate. An array of charging channels are etched into the substrate through the etch-stop layer adjacent to predetermined orifice positions. The charging channels are passivated by depositing a dielectric insulator into the charging channels; and electrical leads are formed by coating the passivated charging channels with metal. A second etch-stop layer is applied to the other of the opposed sides of the substrate, and an array of orifices is formed through the orifice plate substrate at the predetermined orifice positions. The orifices extend between the opposed sides.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: October 21, 2008
    Assignee: Eastman Kodak Company
    Inventors: Richard W. Sexton, Shan Guan, Michael F. Baumer, James E. Harrison, Jr.
  • Publication number: 20080088681
    Abstract: A method of manufacturing an inkjet printer component and an inkjet printer component electropolishing device are provided. The method includes positioning an electrode in a fluid passageway of an inkjet printer component, the electrode including a conductive face and a nonconductive face; polishing a side of the fluid passageway by: biasing the nonconductive face of the electrode toward a side of the fluid passageway such that the conductive face of the electrode does not contact any portion of the fluid passageway; providing an electrolytic fluid to the fluid passageway of the inkjet printer component; and applying a voltage between the electrode and the inkjet printer component.
    Type: Application
    Filed: October 16, 2006
    Publication date: April 17, 2008
    Inventors: James E. Harrison, Francis T. Galbraith, Kevin P. Egan, Bruce A. Bowling, Richard W. Sexton
  • Patent number: 7296350
    Abstract: A method for fabricating a drop generator with a uniquely formed nonconductive mandrel, which when encapsulated with electroplated metal, shapes and defines the internal ink channel entails identifying a non-conductive dimensionally stable structure with a shape adapted to define a fluid cavity for the drop generator for an ink jet printer. The ends of the structure are covered with caps. A conductive base is mounted to each structure. Metal from the conductive base is electroformed onto the structure to a thickness at least equivalent to a desired outer dimension. The caps are removed and the structure is removed, thereby leaving a drop generator with a channel adapted to receive fluid and a slot adapted to communicate fluid from the channel to the orifice plate.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: November 20, 2007
    Assignee: Eastman Kodak Company
    Inventors: Richard W. Sexton, James E. Harrison, Jr.
  • Patent number: 7204020
    Abstract: A method for fabricating a charge plate for an ink jet printhead entails removing portions of conductive material from a dimensionally stable dielectric substrate with a coating of conductive material to form at least a first and second electrode on a first face with a first space between the first and second electrodes, removing portions of conductive material from the dimensionally stable dielectric substrate with a coating of conductive material to form a first electrode extension that engages the first electrode on the conductive charging face, and a second electrode extension that engages the second electrode on the conductive charging face, whereby the first and second electrode extensions are electrically isolated from each other, additionally forming a first space between the electrode extensions, which connects with the first space between the electrode extensions.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: April 17, 2007
    Assignee: Eastman Kodak Company
    Inventors: Brian G. Morris, Richard W. Sexton, Michael F. Baumer, James E. Harrison, Jr.
  • Patent number: 6793314
    Abstract: A method and apparatus are provided for removing contaminates from ink jet printer components. The normal output from a Nd-YAG laser is frequency multiplied to be capable of removing particulates and films from ink jet printer components. The laser cleaning technique provides a dramatic effect on yields.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: September 21, 2004
    Assignee: Eastman Kodak Company
    Inventors: Francis T. Galbraith, James E. Harrison, Jr., Michael R. Morrissey
  • Publication number: 20040032449
    Abstract: A method and apparatus are provided for removing contaminates from ink jet printer components. The normal output from a Nd-YAG laser is frequency multiplied to be capable of removing particulates and films from ink jet printer components. The laser cleaning technique provides a dramatic effect on yields.
    Type: Application
    Filed: July 27, 2001
    Publication date: February 19, 2004
    Applicant: Scitex Digital Printing, Inc.
    Inventors: Francis T. Galbraith, James E. Harrison, Michael R. Morrissey
  • Patent number: 6543885
    Abstract: Metallic bumps are formed for electrical interconnection between the charge plate and the charge drive electronics. This is achieved by having improved electrical connection between an ink jet charge plate and associated charge leads is promoted. This is achieved by integrating the termination pads, electrical transmission lines, and charging leads. The termination bumps are formed as integral parts of the charge leads and are connected directly to the charge driver board electronics by pressure contact. The bumps can be formed by mechanically indenting the termination pads or by using an interposer that has raised metallic pads aligned to the integral nickel pads and the charge driver circuitry board. First, a mask is aligned to permit additive formation of the pads, conductors, and charge leads. Then the nickel circuitry thus formed is made into a rigid charge plate and an integrated flexible section having contact bumps.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: April 8, 2003
    Assignee: Scitex Digital Printing, Inc.
    Inventors: Surinder K. Bahl, James E. Harrison, Jr., Richard W. Sexton
  • Publication number: 20030001932
    Abstract: Metallic bumps are formed for electrical interconnection between the charge plate and the charge drive electronics. This is achieved by having improved electrical connection between an ink jet charge plate and associated charge leads is promoted. This is achieved by integrating the termination pads, electrical transmission lines, and charging leads. The termination bumps are formed as integral parts of the charge leads and are connected directly to the charge driver board electronics by pressure contact. The bumps can be formed by mechanically indenting the termination pads or by using an interposer that has raised metallic pads aligned to the integral nickel pads and the charge driver circuitry board. First, a mask is aligned to permit additive formation of the pads, conductors, and charge leads. Then the nickel circuitry thus formed is made into a rigid charge plate and an integrated flexible section having contact bumps.
    Type: Application
    Filed: June 27, 2001
    Publication date: January 2, 2003
    Applicant: Scitex Digital Printing, Inc.
    Inventors: Surinder K. Bahl, James E. Harrison, Richard W. Sexton
  • Patent number: 6350361
    Abstract: Precise control of deposition or etching of thin films on a transparent substrate is particularly useful for electroformation of nozzles and formation control. A computer based measuring system is used to measure, in real time, a test feature such as one such nozzle. The rate of material deposition and removal is controlled based on the measured value of the test feature. In particular, a video camera and microscope are used to produce images of the test feature. During the electroplating process, metal is plated onto a conductive layer, and as the plated metal layer grows up from the conductive layer of the mandrel, the plated layer can also encroach on transparent openings produced by the absence of the mandrel conductive layer. The amount of encroachment on the transparent openings is directly related to the thickness of the plated layer.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: February 26, 2002
    Assignee: Scitex Digital Printing, Inc.
    Inventors: Richard W. Sexton, James E. Harrison, Jr., Randy L. Fagerquist