Patents by Inventor James E. Hawker

James E. Hawker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11677425
    Abstract: Systems and methods for evaluating link performance over a multitude of frequencies for Signal-to-Noise Ratio (SNR) optimization and mitigating interference. The methods comprise: communicating, from a first communication device, a first signal over a given channel in a given frequency band; receiving, by the first communication device, spectral power measurements and a Signal-to-Total Power Ratio (STPR) estimate determined based on a second signal including the first signal combined with at least one of noise and one or more interference signals (the STPR estimate accounts for the receiver performance including chip rate processing gain and/or the performance of an interference cancellation circuit used to remove the interference signals from the second signal); and determining, by the first communication device, a predicted Signal-to-Noise Ratio (SNR) condition for a plurality of frequencies within the given frequency band using the STPR estimate and the spectral power measurements.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: June 13, 2023
    Assignee: L3HARRIS TECHNOLOGIES, INC.
    Inventors: Radivoje Zarubica, Jeffrey B. Bench, Brent A. Kenney, Philip M. Hirz, Thomas R. Giallorenzi, Brian J. Thorp, James E. Hawker, Lee F. Carter, Marley D. Hamblin, Edwin R. Twitchell, Rhett B. McCarthy
  • Publication number: 20230112645
    Abstract: Systems and methods for evaluating link performance over a multitude of frequencies for Signal-to-Noise Ratio (SNR) optimization and mitigating interference. The methods comprise: communicating, from a first communication device, a first signal over a given channel in a given frequency band; receiving, by the first communication device, spectral power measurements and a Signal-to-Total Power Ratio (STPR) estimate determined based on a second signal including the first signal combined with at least one of noise and one or more interference signals (the STPR estimate accounts for the receiver performance including chip rate processing gain and/or the performance of an interference cancellation circuit used to remove the interference signals from the second signal); and determining, by the first communication device, a predicted Signal-to-Noise Ratio (SNR) condition for a plurality of frequencies within the given frequency band using the STPR estimate and the spectral power measurements.
    Type: Application
    Filed: October 13, 2021
    Publication date: April 13, 2023
    Inventors: Radivoje Zarubica, Jeffrey B. Bench, Brent A. Kenney, Philip M. Hirz, Thomas R. Giallorenzi, Brian J. Thorp, James E. Hawker, Lee F. Carter, Marley D. Hamblin, Edwin R. Twitchell, Rhett B. McCarthy
  • Patent number: 11432248
    Abstract: Determining maximum transmit power by a local node. A method includes identifying one-hop neighbor nodes of the local node in the mesh network. One or more threshold maximum changes in interference caused by the local node increasing its transmit power for each of the one-hop neighbor nodes of the local node are identified. A plurality of power change values are identified. Each power change value in the plurality of power change values corresponds to a power change at the local node that would cause one of the threshold maximum changes in interference to occur at a corresponding one-hop neighbor node of the local node. A lowest power change value from among the plurality of power change values is identified. As a result, power transmitted by the local node is increased, while limiting an increase in power transmitted by the local node to no more than the lowest power change value.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: August 30, 2022
    Assignee: L3HARRIS TECHNOLOGIES, INC.
    Inventors: Brent A. Kenney, James E. Hawker, Brian J. Thorp, Matthew J. Reimann, Patrick L. Newbold