Patents by Inventor James E. Thorson

James E. Thorson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11912545
    Abstract: A wireless hoist system including a first hoist device having a first motor and a first wireless transceiver and a second hoist device having a second motor and a second wireless transceiver. The wireless hoist system includes a controller in wireless communication with the first wireless transceiver and the second wireless. The controller is configured to receive a user input and determine a first operation parameter and a second operation parameter based on the user input. The controller is also configured to provide, wirelessly, a first control signal indicative of the first operation parameter to the first hoist device and provide, wirelessly, a second control signal indicative of the second operation parameter to the second hoist device. The first hoist device operates based on the first control signal and the second hoist device operates based on the second control signal.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: February 27, 2024
    Assignee: Milwaukee Electric Tool Corporation
    Inventors: Matthew Post, Gareth Mueckl, Matthew N. Thurin, Joshua D. Widder, Timothy J. Bartlett, Patrick D. Gallagher, Jarrod P. Kotes, Karly M. Schober, Kenneth W. Wolf, Terry L. Timmons, Mallory L. Marksteiner, Jonathan L. Lambert, Ryan A. Spiering, Jeremy R. Ebner, Benjamin A. Smith, James Wekwert, Brandon L. Yahr, Troy C. Thorson, Connor P. Sprague, John E. Koller, Evan M. Glanzer, John S. Scott, William F. Chapman, III, Timothy R. Obermann
  • Publication number: 20190382559
    Abstract: A nanocomposite is provided including layered nanoparticles and a dispersant dispersed in a curable resin, where the nanocomposite contains less than 2% by weight solvent. A composite is also provided including from about 1 to 70 weight percent of layered nanoparticles, and a dispersant, dispersed in a cured resin, and a filler embedded in the cured resin. Further, a method of preparing a nanoparticle-containing curable resin system is provided including mixing from 1 to 70 weight percent of aggregated layered nanoparticles with a curable resin and a dispersant to form a mixture. The mixture contains less than 2% by weight solvent. The method also includes milling the mixture in an immersion mill containing milling media to form a milled resin system including layered nanoparticles dispersed in the curable resin.
    Type: Application
    Filed: August 27, 2019
    Publication date: December 19, 2019
    Inventors: Peter D. Condo, Jeremy O. Swanson, James E. Thorson, Neeraj Sharma, Steven C. Hackett, Kristin L. Thunhorst
  • Patent number: 10450444
    Abstract: A nanocomposite is provided including spherical pyrogenic silica nanoparticles dispersed in a curable resin or a curing agent. The nanocomposite contains less than 2% by weight solvent and less than 0.5% by weight dispersant based on the nanoparticle weight. A composite is also provided including from about 4 to 70 weight percent of spherical pyrogenic silica nanoparticles dispersed in a cured resin, and a filler embedded in the cured resin. Optionally, the composite further contains a curing agent. Further, a method of preparing a nanoparticle-containing curable resin system is provided including mixing from 10 to 70 weight percent of aggregated spherical pyrogenic silica nanoparticles with a curable resin to form a mixture. The mixture contains less than 2% by weight solvent and less than 0.5% by weight dispersant based on the nanoparticle weight.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: October 22, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Peter D. Condo, James E. Thorson, Jeremy O. Swanson, Kristin L. Thunhorst
  • Patent number: 10442914
    Abstract: A nanocomposite is provided including silica nanoparticles and a dispersant dispersed in a curable resin or a curing agent, where the nanocomposite contains less than 2% by weight solvent. The silica nanoparticles include nonspherical silica nanoparticles and/or spherical pyrogenic silica nanoparticles. A composite is also provided including from about 4 to 70 weight percent of silica nanoparticles, and a dispersant, dispersed in a cured resin, and a filler embedded in the cured resin. Optionally, the composite further contains a curing agent. Further, a method of preparing a nanoparticle-containing curable resin system is provided including mixing from 10 to 70 weight percent of aggregated silica nanoparticles with a curable resin and a dispersant to form a mixture. The mixture contains less than 2% by weight solvent. The method also includes milling the mixture in an immersion mill containing milling media to form a milled resin system including silica nanoparticles dispersed in the curable resin.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: October 15, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Peter D. Condo, Jeremy O. Swanson, James E. Thorson, Kristin L. Thunhorst
  • Publication number: 20180265677
    Abstract: A nanocomposite is provided including spherical pyrogenic silica nanoparticles dispersed in a curable resin or a curing agent. The nanocomposite contains less than 2% by weight solvent and less than 0.5% by weight dispersant based on the nanoparticle weight. A composite is also provided including from about 4 to 70 weight percent of spherical pyrogenic silica nanoparticles dispersed in a cured resin, and a filler embedded in the cured resin. Optionally, the composite further contains a curing agent. Further, a method of preparing a nanoparticle-containing curable resin system is provided including mixing from 10 to 70 weight percent of aggregated spherical pyrogenic silica nanoparticles with a curable resin to form a mixture. The mixture contains less than 2% by weight solvent and less than 0.5% by weight dispersant based on the nanoparticle weight.
    Type: Application
    Filed: May 17, 2018
    Publication date: September 20, 2018
    Inventors: Peter D. Condo, James E. Thorson, Jeremy O. Swanson, Kristin L. Thunhorst
  • Patent number: 10023725
    Abstract: A nanocomposite is provided including nonspherical silica nanoparticles dispersed in a curable resin or a curing agent, where the nanocomposite contains less than 2% by weight solvent. A composite is also provided including from about 4 to 70 weight percent of nonspherical silica nanoparticles dispersed in a cured resin, and a filler embedded in the cured resin. Further, a method of preparing a nanoparticle-containing curable resin system is provided including mixing from 10 to 70 weight percent of aggregated silica nanoparticles with a curable resin and optionally a dispersant, a catalyst, a diluent, a surface treatment agent, and/or a curing agent, to form a mixture. The mixture contains less than 2% by weight solvent. The method also includes milling the mixture in an immersion mill containing milling media to form a milled resin system including nonspherical silica nanoparticles dispersed in the curable resin.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: July 17, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Peter D. Condo, Jeremy O. Swanson, James E. Thorson, William J. Schultz, Kristin L. Thunhorst
  • Patent number: 10023724
    Abstract: A nanocomposite is provided including spherical pyrogenic silica nanoparticles dispersed in a curable resin or a curing agent. The nanocomposite contains less than 2% by weight solvent and less than 0.5% by weight dispersant based on the nanoparticle weight. A composite is also provided including from about 4 to 70 weight percent of spherical pyrogenic silica nanoparticles dispersed in a cured resin, and a filler embedded in the cured resin. Optionally, the composite further contains a curing agent. Further, a method of preparing a nanoparticle-containing curable resin system is provided including mixing from 10 to 70 weight percent of aggregated spherical pyrogenic silica nanoparticles with a curable resin to form a mixture. The mixture contains less than 2% by weight solvent and less than 0.5% by weight dispersant based on the nanoparticle weight.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: July 17, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Peter D. Condo, James E. Thorson, Jeremy O. Swanson, Kristin L. Thunhorst
  • Patent number: 9783681
    Abstract: Methods of compounding nanoparticles with a resin, e.g., a curable resin and one or more surface modifying agents are described. The methods use wet milling technology, including both continuous and batch milling processes, and can be used to functionalize the nanoparticles and disperse the functionalized nanoparticles into the resin system in a single process. Methods of compounding curable resin systems containing reactive diluents are also disclosed.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: October 10, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Peter D. Condo, Jung-Sheng Wu, Chad A. Haraldson, William J. Schultz, Emily S. Goenner, James E. Thorson, Wendy L. Thompson
  • Publication number: 20160200898
    Abstract: A nanocomposite is provided including silica nanoparticles and a dispersant dispersed in a curable resin or a curing agent, where the nanocomposite contains less than 2% by weight solvent. The silica nanoparticles include nonspherical silica nanoparticles and/or spherical pyrogenic silica nanoparticles. A composite is also provided including from about 4 to 70 weight percent of silica nanoparticles, and a dispersant, dispersed in a cured resin, and a filler embedded in the cured resin. Optionally, the composite further contains a curing agent. Further, a method of preparing a nanoparticle-containing curable resin system is provided including mixing from 10 to 70 weight percent of aggregated silica nanoparticles with a curable resin and a dispersant to form a mixture. The mixture contains less than 2% by weight solvent. The method also includes milling the mixture in an immersion mill containing milling media to form a milled resin system including silica nanoparticles dispersed in the curable resin.
    Type: Application
    Filed: August 12, 2014
    Publication date: July 14, 2016
    Inventors: Peter D. Condo, Jeremy O. Swanson, James E. Thorson, Kristin L. Thunhorst
  • Publication number: 20160194480
    Abstract: A nanocomposite is provided including spherical pyrogenic silica nanoparticles dispersed in a curable resin or a curing agent. The nanocomposite contains less than 2% by weight solvent and less than 0.5% by weight dispersant based on the nanoparticle weight. A composite is also provided including from about 4 to 70 weight percent of spherical pyrogenic silica nanoparticles dispersed in a cured resin, and a filler embedded in the cured resin. Optionally, the composite further contains a curing agent. Further, a method of preparing a nanoparticle-containing curable resin system is provided including mixing from 10 to 70 weight percent of aggregated spherical pyrogenic silica nanoparticles with a curable resin to form a mixture. The mixture contains less than 2% by weight solvent and less than 0.5% by weight dispersant based on the nanoparticle weight.
    Type: Application
    Filed: August 13, 2014
    Publication date: July 7, 2016
    Inventors: Peter D. Condo, James E. Thorson, Jeremy O. Swanson, Kristin L. Thunhorst
  • Publication number: 20160194481
    Abstract: A nanocomposite is provided including nonspherical silica nanoparticles dispersed in a curable resin or a curing agent, where the nanocomposite contains less than 2% by weight solvent. A composite is also provided including from about 4 to 70 weight percent of nonspherical silica nanoparticles dispersed in a cured resin, and a filler embedded in the cured resin. Further, a method of preparing a nanoparticle-containing curable resin system is provided including mixing from 10 to 70 weight percent of aggregated silica nanoparticles with a curable resin and optionally a dispersant, a catalyst, a diluent, a surface treatment agent, and/or a curing agent, to form a mixture. The mixture contains less than 2% by weight solvent. The method also includes milling the mixture in an immersion mill containing milling media to form a milled resin system including nonspherical silica nanoparticles dispersed in the curable resin.
    Type: Application
    Filed: August 12, 2014
    Publication date: July 7, 2016
    Inventors: Peter D. Condo, Jeremy O. Swanson, James E. Thorson, William J. Schultz, Kristin L. Thunhorst
  • Publication number: 20160194479
    Abstract: A nanocomposite is provided including layered nanoparticles and a dispersant dispersed in a curable resin, where the nanocomposite contains less than 2% by weight solvent. A composite is also provided including from about 1 to 70 weight percent of layered nanoparticles, and a dispersant, dispersed in a cured resin, and a filler embedded in the cured resin. Further, a method of preparing a nanoparticle-containing curable resin system is provided including mixing from 1 to 70 weight percent of aggregated layered nanoparticles with a curable resin and a dispersant to form a mixture. The mixture contains less than 2% by weight solvent. The method also includes milling the mixture in an immersion mill containing milling media to form a milled resin system including layered nanoparticles dispersed in the curable resin.
    Type: Application
    Filed: August 12, 2014
    Publication date: July 7, 2016
    Inventors: Peter D. Condo, Jeremy O. Swanson, James E. Thorson, Neeraj Sharma, Steven C. Hackett, Kristin L. Thunhorst
  • Patent number: 9221970
    Abstract: Compositions comprising surface-modified nanocalcite particles dispersed in a curable resin, and to coatings and fibrous composites incorporating such compositions are described. The surface-modifying agents include a binding group ionically associated with the calcite and a compatiblizing segment, compatible with the curable resin. The surface-modifying agent may also include a reactive group capable of reacting with the curable resin. Methods of preparing nanocalcite composites and coating a fibrous composites prepared from such nanocalcite composites are also described.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: December 29, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: William J. Schultz, Chad A. Haraldson, Nathan E. Schultz, Wendy L. Thompson, James E. Thorson, Douglas P. Goetz, Steven C. Hackett, James M. Nelson
  • Patent number: 8530054
    Abstract: A multilayer film article is disclosed. The multilayer film article includes an infrared light reflecting multilayer film having alternating layers of a first polymer type and a second polymer type, a hardcoat layer that is the reaction product of a mixture that includes a curable, crosslinkable fluoro-acrylate-containing compound; a curable, crosslinkable non-fluorinated organic compound; infrared light absorbing nanoparticles; and a polymerization initiator. The hardcoat layer being disposed adjacent the multilayer film.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: September 10, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Raghunath Padiyath, Zai-Ming Qiu, James E. Thorson, Jung-Sheng Wu
  • Patent number: 8448885
    Abstract: Methods of compounding nanoparticles (e.g., surface-modified silica nanoparticles) with a resin (e.g., a curable resin) are described. The methods use continuous wet milling technology and can be used to compound nanoparticles, including highly aggregated and agglomerated surface-modified nanoparticles, into a resin or resin precursor.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: May 28, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: James M. Nelson, Daniel P. Decabooter, James E. Thorson, Jung-Sheng Wu
  • Publication number: 20120214948
    Abstract: Methods of compounding nanoparticles with a resin, e.g., a curable resin and one or more surface modifying agents are described. The methods use wet milling technology, including both continuous and batch milling processes, and can be used to functionalize the nanoparticles and disperse the functionalized nanoparticles into the resin system in a single process. Methods of compounding curable resin systems containing reactive diluents are also disclosed.
    Type: Application
    Filed: October 21, 2010
    Publication date: August 23, 2012
    Inventors: Peter D. Condo, Jung-Sheng Wu, Chad A. Haraldson, William J. Schultz, Emily S. Goenner, James E. Thorson, Wendy L. Thompson
  • Publication number: 20110245376
    Abstract: Compositions comprising surface-modified nanocalcite particles dispersed in a curable resin, and to coatings and fibrous composites incorporating such compositions are described. The surface-modifying agents include a binding group ionically associated with the calcite and a compatiblizing segment, compatible with the curable resin. The surface-modifying agent may also include a reactive group capable of reacting with the curable resin. Methods of preparing nanocalcite composites and coating a fibrous composites prepared from such nanocalcite composites are also described.
    Type: Application
    Filed: December 17, 2009
    Publication date: October 6, 2011
    Inventors: William J. Schultz, Chad A. Haraldson, Nathan E. Schultz, Wendy L. Thompson, James E. Thorson, Douglas P. Goetz, Steven C. Hackett, James M. Nelson
  • Publication number: 20110079668
    Abstract: Methods of compounding nanoparticles (e.g., surface-modified silica nanoparticles) with a resin (e.g., a curable resin) are described. The methods use continuous wet milling technology and can be used to compound nanoparticles, including highly aggregated and agglomerated surface-modified nanoparticles, into a resin or resin precursor.
    Type: Application
    Filed: June 12, 2009
    Publication date: April 7, 2011
    Inventors: James M. Nelson, Daniel P. Decabooter, James E. Thorson, Jung-Sheng Wu
  • Publication number: 20100110551
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer, a high index backfill layer, and an optional passivation layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED display device. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 6, 2010
    Inventors: Sergey A. Lamansky, Encai Hao, Ha T. Le, David B. Stegall, Ding Wang, Yi Lu, Terry L. Smith, Jun-Ying Zhang, Jung-Sheng Wu, James E. Thorson
  • Publication number: 20080128665
    Abstract: A nanoparticle thin film is described. An article includes a substrate and the nanoparticle thin film that includes nanoparticles having an average size from 5 nm to 50 nm, at least one electroactive chemical, and at least one organic binder material. The electroactive chemical binds to the surface of the nanoparticles. Also described are dispersions and coating compositions.
    Type: Application
    Filed: December 4, 2006
    Publication date: June 5, 2008
    Inventors: Junjun Wu, John E. Potts, Jung-Sheng Wu, James E. Thorson