Patents by Inventor James Edward MacDougall

James Edward MacDougall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7482676
    Abstract: Low dielectric materials and films comprising same have been identified for improved performance when used as performance materials, for example, in interlevel dielectrics integrated circuits as well as methods for making same. In one aspect of the present invention, the performance of the dielectric material may be improved by controlling the weight percentage of ethylene oxide groups in the at least one porogen.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: January 27, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Brian Keith Peterson, John Francis Kirner, Scott Jeffrey Weigel, James Edward MacDougall, Lisa Deis, Thomas Albert Braymer, Keith Douglas Campbell, Martin Devenney, C. Eric Ramberg, Konstantinos Chondroudis, Keith Cendak
  • Patent number: 7446055
    Abstract: This invention relates to an improvement in a deposition process for producing low dielectric films having a dielectric constant of 3, preferably <2.7 and lower. The process comprises the steps: (a) forming a liquid precursor solution comprised of an organosilicon source containing both Si—O and Si—C bonds and solvent; (b) generating a liquid mist of said liquid precursor solution, said mist existing as precursor solution droplets having a number average droplet diameter size of less than 0.5 ?m; (c) preferably electrically charging the liquid mist of said liquid precursor solution droplets; (d) depositing liquid mist of said liquid precursor solution droplets onto a substrate; and, (e) converting the thus deposited liquid mist of said liquid precursor solution droplets to a solid, low dielectric film.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: November 4, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Scott Jeffrey Weigel, Jean Louise Vincent, Sarah Kathryn Coulter, James Edward MacDougall
  • Patent number: 7421885
    Abstract: A method and apparatus for determining pore size distribution and/or the presence of at least one killer pore in at least a portion of a porous film deposited upon a substrate are disclosed herein. In one embodiment, there is provided a method for determining pore size distribution comprising: providing the substrate having the film deposited thereupon wherein the film comprises pores and wherein the pores have a first volume; exposing the film to an adsorbate at a temperature and a pressure sufficient to provide condensation of the adsorbate in pores and wherein the pores after the exposing step have a second volume; and measuring the difference between the first and the second volume using a volumetric technique; and calculating the pore size and pore volume using the change in the first and the second volume, the pressure, and a model that relates pressure to pore diameter.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: September 9, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Ronald Joseph Kitzhoffer, Scott Jeffrey Weigel, Charles Gardner Coe, Michael Francis Kimak, James Edward MacDougall, John Francis Kirner
  • Patent number: 7307343
    Abstract: Low dielectric materials and films comprising same have been identified for improved performance when used as interlevel dielectrics in integrated circuits as well as methods for making same. These materials are characterized as having a dielectric constant (?) a dielectric constant of about 3.7 or less; a normalized wall elastic modulus (E0?), derived in part from the dielectric constant of the material, of about 15 GPa or greater; and a metal impurity level of about 500 ppm or less. Low dielectric materials are also disclosed having a dielectric constant of less than about 1.95 and a normalized wall elastic modulus (E0?), derived in part from the dielectric constant of the material, of greater than about 26 GPa.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: December 11, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Francis Kirner, James Edward MacDougall, Brian Keith Peterson, Scott Jeffrey Weigel, Thomas Alan Deis, Martin Devenney, C. Eric Ramberg, Konstantinos Chondroudis, Keith Cendak
  • Patent number: 7294585
    Abstract: Low dielectric materials and films comprising same have been identified for improved performance when used as performance materials, for example, in interlevel dielectrics integrated circuits as well as methods for making same. In one aspect of the present invention, the performance of the dielectric material may be improved by controlling the weight percentage of ethylene oxide groups in the at least one porogen.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: November 13, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Brian Keith Peterson, John Francis Kirner, Scott Jeffrey Weigel, James Edward MacDougall, Lisa Deis, legal representative, Thomas Albert Braymer, Keith Douglas Campbell, Martin Devenney, C. Eric Ramberg, Konstantinos Chondroudis, Keith Cendak, Thomas Alan Deis, deceased
  • Patent number: 7186613
    Abstract: Low dielectric materials and films comprising same have been identified for improved performance when used as interlevel dielectrics in integrated circuits as well as methods for making same. These materials are characterized as having a dielectric constant (?) a dielectric constant of about 3.7 or less; a normalized wall elastic modulus (E0?), derived in part from the dielectric constant of the material, of about 15 GPa or greater; and a metal impurity level of about 500 ppm or less. Low dielectric materials are also disclosed having a dielectric constant of less than about 1.95 and a normalized wall elastic modulus (E0?), derived in part from the dielectric constant of the material, of greater than about 26 GPa.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: March 6, 2007
    Assignee: Air Products And Chemicals, Inc.
    Inventors: John Francis Kirner, James Edward MacDougall, Brian Keith Peterson, Scott Jeffrey Weigel, Thomas Alan Deis, Martin Devenney, C. Eric Ramberg, Konstantinos Chondroudis, Keith Cendak
  • Patent number: 7122880
    Abstract: Low dielectric materials and films comprising same have been identified for improved performance when used as performance materials, for example, in interlevel dielectrics integrated circuits as well as methods for making same. In one aspect of the present invention, the performance of the dielectric material may be improved by controlling the weight percentage of ethylene oxide groups in the at least one porogen.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: October 17, 2006
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Brian Keith Peterson, John Francis Kirner, Scott Jeffrey Weigel, James Edward MacDougall, Lisa Deis, Thomas Albert Braymer, Keith Douglas Campbell, Martin Devenney, C. Eric Ramberg, Konstantinos Chondroudis, Keith Cendak
  • Publication number: 20060005608
    Abstract: A method and apparatus for determining pore size distribution and/or the presence of at least one killer pore in at least a portion of a porous film deposited upon a substrate are disclosed herein. In one embodiment, there is provided a method for determining pore size distribution comprising: providing the substrate having the film deposited thereupon wherein the film comprises pores and wherein the pores have a first volume; exposing the film to an adsorbate at a temperature and a pressure sufficient to provide condensation of the adsorbate in pores and wherein the pores after the exposing step have a second volume; and measuring the difference between the first and the second volume using a volumetric technique; and calculating the pore size and pore volume using the change in the first and the second volume, the pressure, and a model that relates pressure to pore diameter.
    Type: Application
    Filed: June 28, 2005
    Publication date: January 12, 2006
    Inventors: Ronald Joseph Kitzhoffer, Scott Jeffrey Weigel, Charles Gardner Coe, Michael Francis Kimak, James Edward MacDougall, John Francis Kirner
  • Patent number: 6942918
    Abstract: A process provides a ceramic film, such as a mesoporous silica film, on a substrate, such as a silicon wafer. The process includes preparing a film-forming fluid containing a ceramic precursor, a catalyst, a surfactant and a solvent, depositing the film-forming fluid on the substrate, and removing the solvent from the film-forming fluid on the substrate to produce the ceramic film on the substrate. The ceramic film has a dielectric constant below 2.3, a halide content of less than 1 ppm and a metal content of less than 500 ppm, making it useful for current and future microelectronics applications.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: September 13, 2005
    Assignee: Air Products and Chemicals, Inc.
    Inventors: James Edward MacDougall, Kevin Ray Heier, Scott Jeffrey Weigel
  • Patent number: 6818289
    Abstract: A process provides a ceramic film, such as a mesoporous silica film, on a substrate, such as a silicon wafer. The process includes preparing a film-forming fluid containing a ceramic precursor, a catalyst, a surfactant and a solvent, depositing the film-forming fluid on the substrate, and removing the solvent from the film-forming fluid on the substrate to produce the ceramic film on the substrate. The ceramic film has a dielectric constant below 2.3, a halide content of less than 1 ppm and a metal content of less than 500 ppm, making it useful for current and future microelectronics applications.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: November 16, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: James Edward MacDougall, Kevin Ray Heier, Scott Jeffrey Weigel, Timothy W. Weidman, Alexandros T. Demos, Nikolaos Bekiaris, Yunfeng Lu, Michael P Nault, Robert Parkash Mandal
  • Publication number: 20040071888
    Abstract: The present invention is generally relates to the field of research for the discovery of films with desirable properties, and to a process for making such films. More particularly, the present invention is directed to a system or an apparatus and a method for the rapid formation of a library of liquid samples and a library of thin films therefrom, as well as to the rapid screening of these films to identify those having desirable properties, all of which may be achieved using combinatorial techniques.
    Type: Application
    Filed: May 30, 2003
    Publication date: April 15, 2004
    Applicants: Symyx Technologies, Inc., Air Products and Chemicals, Inc.
    Inventors: Konstantinos Chondroudis, Keith Cendak, Martin Devenney, C. Eric Ramberg, Xuejun (Jason) Wang, Raymond E. Carhart, Scott Jeffrey Weigel, John Francis Kirner, Thomas Alan Deis, Earl Danielson, James Edward MacDougall, Lisa Deis, Sum Nguyen
  • Publication number: 20040048960
    Abstract: Low dielectric materials and films comprising same have been identified for improved performance when used as performance materials, for example, in interlevel dielectrics integrated circuits as well as methods for making same. In one aspect of the present invention, the performance of the dielectric material may be improved by controlling the weight percentage of ethylene oxide groups in the at least one porogen.
    Type: Application
    Filed: May 20, 2003
    Publication date: March 11, 2004
    Inventors: Brian Keith Peterson, John Francis Kirner, Scott Jeffrey Weigel, James Edward MacDougall, Lisa Deis, Thomas Albert Braymer, Keith Douglas Campbell, Martin Devenney, C. Eric Ramberg, Konstantinos Chondroudis, Keith Cendak
  • Publication number: 20030224156
    Abstract: Low dielectric materials and films comprising same have been identified for improved performance when used as interlevel dielectrics in integrated circuits as well as methods for making same. These materials are characterized as having a dielectric constant (&kgr;) a dielectric constant of about 3.7 or less; a normalized wall elastic modulus (E0′), derived in part from the dielectric constant of the material, of about 15 GPa or greater; and a metal impurity level of about 500 ppm or less. Low dielectric materials are also disclosed having a dielectric constant of less than about 1.95 and a normalized wall elastic modulus (E0′), derived in part from the dielectric constant of the material, of greater than about 26 GPa.
    Type: Application
    Filed: May 30, 2002
    Publication date: December 4, 2003
    Inventors: John Francis Kirner, James Edward MacDougall, Brian Keith Peterson, Scott Jeffrey Weigel, Thomas Alan Deis, Martin Devenney, C. Eric Ramberg, Konstantinos Chondroudis, Keith Cendak
  • Publication number: 20030157311
    Abstract: A process provides a ceramic film, such as a mesoporous silica film, on a substrate, such as a silicon wafer. The process includes preparing a film-forming fluid containing a ceramic precursor, a catalyst, a surfactant and a solvent, depositing the film-forming fluid on the substrate, and removing the solvent from the film-forming fluid on the substrate to produce the ceramic film on the substrate. The ceramic film has a dielectric constant below 2.3, a halide content of less than 1 ppm and a metal content of less than 500 ppm, making it useful for current and future microelectronics applications.
    Type: Application
    Filed: October 2, 2002
    Publication date: August 21, 2003
    Inventors: James Edward MacDougall, Kevin Ray Heier, Scott Jeffrey Weigel, Timothy W. Weidman, Alexandros T. Demos, Nikolaos Bekiaris, Yunfeng Lu, Michael P. Nault, Robert Parkash Mandal
  • Patent number: 6592980
    Abstract: A process provides a ceramic film, such as a mesoporous silica film, on a substrate, such as a silicon wafer. The process includes preparing a film-forming fluid containing a ceramic precursor, a catalyst, a surfactant and a solvent, depositing the film-forming fluid on the substrate, and removing the solvent from the film-forming fluid on the substrate to produce the ceramic film on the substrate. The ceramic film has a dielectric constant below 2.3, a halide content of less than 1 ppm and a metal content of less than 500 ppm, making it useful for current and future microelectronics applications.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: July 15, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: James Edward MacDougall, Kevin Ray Heier, Scott Jeffrey Weigel, Timothy W. Weidman, Alexandros T. Demos, Nikolaos Bekiaris, Yunfeng Lu, Michael P. Nault, Robert Parkash Mandal
  • Publication number: 20020102396
    Abstract: A process provides a ceramic film, such as a mesoporous silica film, on a substrate, such as a silicon wafer. The process includes preparing a film-forming fluid containing a ceramic precursor, a catalyst, a surfactant and a solvent, depositing the film-forming fluid on the substrate, and removing the solvent from the film-forming fluid on the substrate to produce the ceramic film on the substrate. The ceramic film has a dielectric constant below 2.3, a halide content of less than 1 ppm and a metal content of less than 500 ppm, making it useful for current and future microelectronics applications.
    Type: Application
    Filed: January 14, 2002
    Publication date: August 1, 2002
    Inventors: James Edward MacDougall, Kevin Ray Heier, Scott Jeffrey Weigel
  • Patent number: 6365266
    Abstract: A process provides a ceramic film, such as a mesoporous silica film, on a substrate, such as a silicon wafer. The process includes preparing a film-forming fluid containing a ceramic precursor, a catalyst, a surfactant and a solvent, depositing the film-forming fluid on the substrate, and removing the solvent from the film-forming fluid on the substrate to produce the ceramic film on the substrate. The ceramic film has a dielectric constant below 2.3, a halide content of less than 1 ppm and a metal content of less than 500 ppm, making it useful for current and future microelectronics applications.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: April 2, 2002
    Assignee: Air Products and Chemicals, Inc.
    Inventors: James Edward MacDougall, Kevin Ray Heier, Scott Jeffrey Weigel
  • Patent number: 6136069
    Abstract: A method of separating a more strongly adsorbable component from one or more less strongly adsorbable components residing in a gaseous mixture comprising contacting the gaseous mixture at elevated pressure with a composition and adsorbing the more strongly adsorbed gas specie on the composition, wherein the composition is represented by the formulaM.sup.n+.sub.(2x+y)/n [Si.sub.(2-x-y) Al.sub.(y) Zn.sub.(x) ]O.sub.4 ;whereinM is cation selected from Groups 1, 2, 7, 10, 11, 12 and the f block elements as defined by thePeriodic Table of the elements as adopted by IUPAC;n is the valence of the selected cation; M;x is greater than or equal to 0.02 but less than or equal to 1;y is a value less than or equal to 0.98; and2x+y is greater than or equal to 0.80;wherein the composition of matter has a FAU structure and zinc resides in.sub.-- tetrahedral positions in the framework of the FAU structure.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: October 24, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: James Edward MacDougall, Thomas Albert Braymer, Charles Gardner Coe
  • Patent number: 6103214
    Abstract: A composition of matter represented by the formulaM.sup.n+.sub.z/n [Si.sub.(2-x-y) Al.sub.(y) Zn.sub.(x) ]O.sub.4 .multidot..cndot.wH.sub.2 OwhereinM is a cation selected from Groups 1, 2, 7, 10, 11, 12 and the f block elements as defined by the Periodic Table of the elements as adopted by IUPAC; n is the valence of the selected cation, M; x is greater than or equal to 0.02 but less than or equal to 1;y is less than or equal to 0.98; z>0.54; and w ranges from 0 to about 8;provided that when z.gtoreq.0.80, then 2x+y does not equal z;which composition of matter has the FAU structure with zinc residing in tetrahedral positions in the framework of the FAU structure;and whereupon such composition of matter is converted to a hydrated sodium form, the hydrated sodium form of the composition of matter exhibits a lattice constant (a.sub.0)wherein ##EQU1## where R represents the Si/Al molar ratio of the composition of matter.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: August 15, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: James Edward MacDougall, Thomas Albert Braymer, Charles Gardner Coe
  • Patent number: 5810910
    Abstract: An improved adsorbent for ozone comprises a crystalline aluminosilicate in which at least 90% of the exchangeable cation content is in the acid form and further which contains between 0.5 and 20 wt % of one or more adsorbed components which are non-reactive with ozone. Preferably the adsorbed component is water, and the total non-framework metal content expressed as metal oxide is less than 0.4 mole %.
    Type: Grant
    Filed: October 6, 1995
    Date of Patent: September 22, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Keith Alan Ludwig, Charles Gardner Coe, James Edward MacDougall, Arne Baumgartl