Patents by Inventor James F. Farrell

James F. Farrell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8616809
    Abstract: The present invention provides a toolholder mountable on a lathe or other machine tool for supporting a cutting plate relative to a workpiece for cutting or shaping the workpiece. The toolholder including a body having a tapered tool base at one end thereof, the tool base defining a tool seat for supporting a cutting plate. A plug screw having a head defining threads on an outer surface thereof for engaging a threaded hole in the tool base is also provided. The plug screw further defining a shank extending eccentrically from the head, the shank being receivable through a mounting hole defined by the cutting plate for locating the cutting plate relative to the tool seat upon rotation of the plug screw relative to the tool base. A lock nut is provided for receiving a threaded end of the shank for securing the cutting plate to the tool base and toolholder.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: December 31, 2013
    Inventor: James F. Farrell
  • Patent number: 7952695
    Abstract: A scanning optical spectrometer with a detector array is disclosed, in which position of focused spot of light at the input of a dispersive element such as arrayed waveguide grating (AWG) with a slab input, is scanned using a micro-electro-mechanical (MEMS) tiltable micromirror so as to make the dispersed spectrum of light scan over the detector array coupled to the AWG. Sub-spectra recorded using individual detectors are concatenated by a processor unit to obtain the spectrum of input light.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: May 31, 2011
    Assignee: JDS Uniphase Corporation
    Inventors: Douglas E. Crafts, Jinxi Shen, Philip Duggan, James F. Farrell, Barthelemy Fondeur, Eliseo Ranalli
  • Publication number: 20110096326
    Abstract: A scanning optical spectrometer with a detector array is disclosed, in which position of focused spot of light at the input of a dispersive element such as arrayed waveguide grating (AWG) with a slab input, is scanned using a micro-electro-mechanical (MEMS) tiltable micromirror so as to make the dispersed spectrum of light scan over the detector array coupled to the AWG. Sub-spectra recorded using individual detectors are concatenated by a processor unit to obtain the spectrum of input light.
    Type: Application
    Filed: November 4, 2010
    Publication date: April 28, 2011
    Applicant: JDS Uniphase Corporation
    Inventors: Douglas E. Crafts, Jinxi Shen, Philip Duggan, James F. Farrell, Barthelemy Fondeur, Eliseo Ranalli
  • Publication number: 20110017293
    Abstract: An improved thin film PV module and simplified fabrication process are provided that achieve higher PV module efficiency, while eliminating expensive process steps, and reducing the capital cost of thin film processing equipment. A lamination material, characterized by high reflectivity as well as thermal conductivity and emissivity, is provided directly adjacent the active region of a thin film stack, eliminating the need for complex sputtering or deposition process steps ordinarily required for providing a reflective layer. The lamination material reflects unabsorbed light back into the thin film stack, thereby increasing photocurrent generation, and obviating the need for a reflective metallization layer. The lamination layer and back sheet for sealing the light-absorbing stack against the ingress of moisture also can be applied in a single process step.
    Type: Application
    Filed: August 31, 2009
    Publication date: January 27, 2011
    Inventors: James F. Farrell, Satyanarayana Rao Peddada
  • Publication number: 20110017265
    Abstract: A thermally conductive material is provided adjacent to or close to the active light-absorbing surface in silicon PV modules made with x-Si or p-Si cells or in thin film PV modules. The material is characterized by high thermal conduction and emissivity as well as high reflectance with respect to the solar spectrum. An exterior portion of the thermally conductive material is wrapped around the rearward facing, shaded surface of the PV module, thereby defining a thermal gradient for conduction of heat from the interior of the PV module to the cooler exterior, where heat is dissipated into the ambient surroundings. The thermally conductive, highly reflective material may be incorporated in or otherwise integrated with a lamination material used to adhere the back sheet to the front sheet of a thin film PV module.
    Type: Application
    Filed: August 26, 2009
    Publication date: January 27, 2011
    Inventors: James F. Farrell, Satyanarayana Rao Peddada
  • Publication number: 20110017266
    Abstract: An improved thin film PV module and simplified fabrication process are provided that achieve higher PV module efficiency, while eliminating expensive process steps, and reducing the capital cost of thin film processing equipment. A lamination material, characterized by high reflectivity as well as thermal conductivity and emissivity, is provided directly adjacent the active region of a thin film stack, eliminating the need for complex sputtering or deposition process steps ordinarily required for providing a reflective layer. The lamination material reflects unabsorbed light back into the thin film stack thereby increasing photocurrent generation, and obviating the need for a reflective metallization layer. The lamination layer and back sheet for sealing the light-absorbing stack against the ingress of moisture also can be applied in a single process step.
    Type: Application
    Filed: August 27, 2009
    Publication date: January 27, 2011
    Inventors: James F. Farrell, Batyanarayana Rao Peddada
  • Patent number: 7852475
    Abstract: A scanning optical spectrometer with a detector array is disclosed, in which position of focused spot of light at the input of a dispersive element such as arrayed waveguide grating (AWG) with a slab input, is scanned using a micro-electro-mechanical (MEMS) tiltable micromirror so as to make the dispersed spectrum of light scan over the detector array coupled to the AWG. Sub-spectra recorded using individual detectors are concatenated by a processor unit to obtain the spectrum of input light.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: December 14, 2010
    Assignee: JDS Uniphase Corporation
    Inventors: Douglas E. Crafts, Jinxi Shen, Philip Duggan, James F. Farrell, Barthelemy Fondeur, Eliseo Ranalli
  • Publication number: 20100126580
    Abstract: An inexpensive system is provided for manufacturing a CdTe solar cell in a single pass using sputtering without the need for a wet process and without the need for high temperature gas diffusion. Thus, toxic gases and wet chemical baths are advantageously eliminated. A halogen gas, such as chlorine, and oxygen are added during the sputtering of a CdTe film, so that a wet process is eliminated and the deposited CdTe film can be annealed rapidly, such as by a rapid thermal anneal process (RTA).
    Type: Application
    Filed: November 23, 2009
    Publication date: May 27, 2010
    Inventors: James F. Farrell, Hehong Zhao
  • Publication number: 20090046288
    Abstract: A scanning optical spectrometer with a detector array is disclosed, in which position of focused spot of light at the input of a dispersive element such as arrayed waveguide grating (AWG) with a slab input, is scanned using a micro-electro-mechanical (MEMS) tiltable micromirror so as to make the dispersed spectrum of light scan over the detector array coupled to the AWG. Sub-spectra recorded using individual detectors are concatenated by a processor unit to obtain the spectrum of input light.
    Type: Application
    Filed: August 12, 2008
    Publication date: February 19, 2009
    Applicant: JDS Uniphase Corporation
    Inventors: Douglas E. Crafts, Jinxi Shen, Philip Duggan, James F. Farrell, Barthelemy Fondeur, Eliseo Ranalli
  • Patent number: 7203390
    Abstract: An optical packaging arrangement combines a planar lightwave circuit (PLC) having an array of waveguides thereon, an array of photodetectors on a substrate to receive light beams coupled out of the PLC by the output ports, and a collimating faceplate, having a plurality of glass cores, extending between the PLC and the photodetector array for coupling the output light beams to respective photodetectors. The faceplate forms a cover for a hermetic cavity encompassing the photodetectors. The PLC is disposed either co-planarly with the faceplate or transversely to it. Light from the PLC is tapped via a plurality of taps formed on the PLC for coupling to the photodetectors.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: April 10, 2007
    Assignee: JDS Uniphase Corporation
    Inventors: Douglas E. Crafts, James F. Farrell, Mark B. Farrelly, Duane Cook, Satyanarayana Rao Peddada
  • Patent number: 6945708
    Abstract: An optical packaging arrangement combines a planar lightwave circuit (PLC) having an array of waveguides thereon, an array of photodetectors on a substrate to receive light beams coupled out of the PLC by the output ports, and a collimating faceplate, having a plurality of glass cores, extending between the PLC and the photodetector array for coupling the output light beams to respective photodetectors. The faceplate forms a cover for a hermetic cavity encompassing the photodetectors. The PLC is disposed either co-planarly with the faceplate or transversely to it. Light from the PLC is tapped via a plurality of taps formed on the PLC for coupling to the photodetectors.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: September 20, 2005
    Assignee: JDS Uniphase Corporation
    Inventors: Douglas E. Crafts, James F. Farrell, Mark B. Farrelly, Duane Cook, Satyanarayana Rao Peddada
  • Publication number: 20040161186
    Abstract: An optical packaging arrangement combines a planar lightwave circuit (PLC) having an array of waveguides thereon, an array of photodetectors on a substrate to receive light beams coupled out of the PLC by the output ports, and a collimating faceplate, having a plurality of glass cores, extending between the PLC and the photodetector array for coupling the output light beams to respective photodetectors. The faceplate forms a cover for a hermetic cavity encompassing the photodetectors. The PLC is disposed either co-planarly with the faceplate or transversely to it. Light from the PLC is tapped via a plurality of taps formed on the PLC for coupling to the photodetectors.
    Type: Application
    Filed: February 18, 2003
    Publication date: August 19, 2004
    Applicant: JDS Uniphase Corporation, State of Incorporation: Delaware
    Inventors: Douglas E. Crafts, James F. Farrell, Mark B. Farrelly, Duane Cook, Satyanarayana Rao Peddada
  • Patent number: 6697553
    Abstract: A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: February 24, 2004
    Assignee: JDS Uniphase Corporation
    Inventors: Jyoti Kiron Bhardwaj, Robert James Brainard, David J. Chapman, Douglas E. Crafts, Zi-Wen Dong, David Dougherty, Erik W. Egan, James F. Farrell, Mark B. Farrelly, Niranjan Gopinathan, Kenzo Ishida, David K. Nakamoto, Thomas Thuan Nguyen, Suresh Ramalingam, Steven M. Swain, Sanjay M. Thekdi, Anantharaman Vaidyanathan, Hiroaki Yamada, Yingchao Yan
  • Patent number: 6664511
    Abstract: A package for optical components includes an inner package enclosing the optical component, and an outer package enclosing the inner package. A heater may be disposed in the inner package proximate the optical component to control its temperature, and to maintain this temperature control, the outer package creates an isolated air pocket around the inner package, which thermally insulates the inner package from the outside environment. The outer package is formed of a material having low thermal conductivity, to promote this insulating function. This package is especially useful if the optical component comprises a planar light-wave circuit (PLC), e.g. an arrayed waveguide grating (AWG), which requires tight temperature control and structural integrity to maintain the integrity of the optical paths.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: December 16, 2003
    Assignee: JDS Uniphase Corporation
    Inventors: Douglas E. Crafts, James F. Farrell, Mark B. Farrelly, Suresh Ramalingam, Kenzo Ishida
  • Publication number: 20030219192
    Abstract: Planar lightwave circuits (PLCs) are typically provided with a passivation coating layer to prevent damaging effects of environmental factors. In certain cases, deep trenching or a similar procedure after passivation removes the protective passivation coating, exposing the underlying layers. Without the passivation coating, the exposed core and cladding layers may absorb moisture resulting in an unacceptable shift in their refractive index. A supplemental hermetic sealing technique suitable for use in localized areas of a PLC, e.g., in areas where passivation may have been removed, consists of providing a sealing lid having a sealing surface, and diffusion-bonding the sealing surface of the sealing lid to the bonding surface about the PLC area. Preferably, prior to said diffusion bonding, the upper bonding surface about the PLC area and the sealing surface of the sealing lid are smoothed to facilitate the bonding.
    Type: Application
    Filed: May 7, 2003
    Publication date: November 27, 2003
    Applicant: JDS UNIPHASE CORPORATION
    Inventors: Douglas E. Crafts, James F. Farrell, Mark B. Farrelly
  • Publication number: 20030156789
    Abstract: A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).
    Type: Application
    Filed: February 15, 2002
    Publication date: August 21, 2003
    Inventors: Jyoti Kiron Bhardwaj, Robert James Brainard, David J. Chapman, Douglas E. Crafts, Zi-Wen Dong, David Dougherty, Erik W. Egan, James F. Farrell, Mark B. Farrelly, Niranjan Gopinathan, Kenzo Ishida, David K. Nakamoto, Thomas Thuan Nguyen, Suresh Ramalingam, Steven M. Swain, Sanjay M. Thekdi, Anantharaman Vaidyanathan, Hiroaki Yamada, Yingchao Yan
  • Patent number: 6606425
    Abstract: An optical component package, in which a transfer molded layer of material (e.g., syntactic foam in one embodiment) is formed at least partially around, or entirely around, the optical component to provide structural and thermal insulation around the component. The optical component may be a planar lightwave circuit (PLC), with a protective passivation layer formed between the PLC and the layer of syntactic foam, to de-couple stresses and thermal transfer between the PLC and the layer of syntactic foam. Strengthening caps, fiber assemblies, and a heater may be provided with the PLC assembly, around which the layer of syntactic foam can also be formed. The protective passivation layer can also be formed between these structures and the syntactic foam; in one embodiment between at least two strengthening caps formed on opposing edges of the PLC. The disclosed package provides numerous structural, thermal and size benefits.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: August 12, 2003
    Assignee: JDS Uniphase Corporation
    Inventors: Douglas E. Crafts, Kenzo Ishida, David J. Chapman, Duane Cook, James F. Farrell, Suresh Ramalingam, Steven M. Swain
  • Publication number: 20030085212
    Abstract: A package for optical components includes an inner package enclosing the optical component, and an outer package enclosing the inner package. A heater may be disposed in the inner package proximate the optical component to control its temperature, and to maintain this temperature control, the outer package creates an isolated air pocket around the inner package, which thermally insulates the inner package from the outside environment. The outer package is formed of a material having low thermal conductivity, to promote this insulating function. This package is especially useful if the optical component comprises a planar light-wave circuit (PLC), e.g. an arrayed waveguide grating (AWG), which requires tight temperature control and structural integrity to maintain the integrity of the optical paths.
    Type: Application
    Filed: October 28, 2002
    Publication date: May 8, 2003
    Applicant: JDS Uniphase Corporation
    Inventors: Douglas E. Crafts, James F. Farrell, Mark B. Farrelly, Suresh Ramalingam, Kenzo Ishida
  • Publication number: 20030006224
    Abstract: A redundant package for optical components includes an inner package enclosing the optical component, and an outer package enclosing the inner package. A heater may be disposed in the inner package proximate the optical component to control its temperature, and to maintain this temperature control, the outer package creates an isolated air pocket around the inner package which thermally insulates the inner package from the outside environment. The outer package is formed of a material having low thermal conductivity, to promote this insulating function. This package is especially useful if the optical component comprises a planar lightwave circuit (PLC), e.g., an arrayed waveguide grating (AWG), which requires tight temperature control and structural integrity to maintain the integrity of the optical paths.
    Type: Application
    Filed: July 9, 2001
    Publication date: January 9, 2003
    Applicant: Scion Photonics, Inc.
    Inventors: Douglas E. Crafts, James F. Farrell, Mark B. Farrelly, Suresh Ramalingam
  • Patent number: 6486440
    Abstract: A redundant package for optical components includes an inner package enclosing the optical component, and an outer package enclosing the inner package. A heater may be disposed in the inner package proximate the optical component to control its temperature, and to maintain this temperature control, the outer package creates an isolated air pocket around the inner package which thermally insulates the inner package from the outside environment. The outer package is formed of a material having low thermal conductivity, to promote this insulating function. This package is especially useful if the optical component comprises a planar lightwave circuit (PLC), e.g., an arrayed waveguide grating (AWG), which requires tight temperature control and structural integrity to maintain the integrity of the optical paths.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: November 26, 2002
    Assignee: JDS Uniphase Corporation
    Inventors: Douglas E. Crafts, James F. Farrell, Mark B. Farrelly, Suresh Ramalingam