Patents by Inventor James F. Hoffman

James F. Hoffman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070212790
    Abstract: A monitoring of catalytic cracking processing is provided which uses near infrared (NIR) analysis to characterize cracking feeds, intermediates and products for chemical and physical properties such as saturates, monoaromatics, diaromatics, triaromatics, tetraaromatics, polar aromatics, total aromatics, thiophenes, distillation points, basic nitrogen, total nitrogen, API gravity, total sulfur, MCRT and % coker gasoil and the resulting characterization thereof. The NIR results can be used in FCC simulation software to predict unit yields and qualities.
    Type: Application
    Filed: January 19, 2007
    Publication date: September 13, 2007
    Inventors: William T. Welch, James F. Hoffman, Brian K. Wilt, Roy Roger Bledsoe, Michael B. Sumner, Jeff Sexton
  • Patent number: 5961709
    Abstract: An environmentally improved asphalt paving composition which contains a solvent-precipitated asphaltene, such as solvent deasphalting bottoms, and a viscosity reducing amount of paraffinic fluxing component, e.g., 325 Neutral Oil.
    Type: Grant
    Filed: February 19, 1998
    Date of Patent: October 5, 1999
    Assignee: Marathon Ashland Petroleum LLC
    Inventors: Roger E. Hayner, Patricia K. Doolin, James F. Hoffman, Robert H. Wombles
  • Patent number: 4450241
    Abstract: A process is disclosed for the conversion of high boiling oil feeds having a significant level of Conradson carbon components and metals to form lighter oil products by contacting the feed under catalytic conversion conditions with a catalyst containing one of a select group of metal additives to catalyze the endothermic removal of carbon with CO.sub.2. Conversion conditions are such that hydrocarbonaceous material and metals are deposited to deactivate the catalyst in the conversion zone. Deactivated catalyst is partially regenerated in the presence of carbon dioxide containing gas before or after oxygen regeneration at a temperature below 1600.degree. F. to provide a regenerated catalyst which is recycled to the conversion zone for further contact with fresh feed. The metal additive is present on the catalyst in an amount sufficient to catalyze the endothermic removal of carbonaceous material in the presence of a carbon dioxide rich gas at regeneration temperature below 1500.degree. F.
    Type: Grant
    Filed: August 16, 1982
    Date of Patent: May 22, 1984
    Assignee: Ashland Oil, Inc.
    Inventors: William P. Hettinger, Jr., Stephen M. Kovach, James F. Hoffman
  • Patent number: 4425259
    Abstract: A process is disclosed for the conversion of high boiling oil feeds having a significant level of Conradson carbon components and metals to form lighter oil products by contacting the feed under catalytic conversion conditions with a catalyst containing one of a select group of metal additives to catalyze the endothermic removal of carbon with CO.sub.2. Conversion conditions are such that hydrocarbonaceous material and metals are deposited to deactivate the catalyst in the conversion zone. Deactivated catalyst is partially regenerated in the presence of carbon dioxide containing gas before or after oxygen regeneration at a temperature below 1600.degree. F. to provide a regenerated catalyst which is recycled to the conversion zone for further contact with fresh feed. The metal additive is present on the catalyst in an amount sufficient to catalyze the endothermic removal of carbonaceous material in the presence of a carbon dioxide rich gas at regeneration temperature below 1500.degree. F.
    Type: Grant
    Filed: August 5, 1981
    Date of Patent: January 10, 1984
    Assignee: Ashland Oil, Inc.
    Inventors: William P. Hettinger, Jr., Stephen M. Kovach, James F. Hoffman
  • Patent number: 4412914
    Abstract: A process is disclosed for decarbonization-demetallization of a poor quality residual oil feed boiling above about 650.degree. F. and comprising substantial Conradson carbon components to provide a higher grade of oil feed by contacting the poor quality oil feed with sorbent particle material containing one or more metal additives selected to catalyze the endothermic removal of coke with CO.sub.2. Sorbent decarbonization conditions are selected so that substantial quantities of carbonaceous material and metals are deposited on the sorbent in the decarbonizing zone. Sorbent material with metals and hydrocarbonaceous deposits is regenerated in the presence of an oxygen and carbon dioxide containing gas streams in separate sorbent regeneration zones at a temperature sufficiently elevated to remove residual coke to a desired low level. Regenerated sorbent particle material at an elevated temperature below about 1500.degree. F.
    Type: Grant
    Filed: August 10, 1981
    Date of Patent: November 1, 1983
    Assignee: Ashland Oil, Inc.
    Inventors: William P. Hettinger, Jr., James F. Hoffman, Stephen M. Kovach