Patents by Inventor James F. Maguire

James F. Maguire has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9653196
    Abstract: A cooling system includes a first section of high temperature superconducting (HTS) cable configured to receive a first flow of coolant and to permit the first flow of coolant to flow therethrough. The system may further include a second section of high temperature superconducting (HTS) cable configured to receive a second flow of coolant and to permit the second flow of coolant to flow therethrough. The system may further include a cable joint configured to couple the first section of HTS cable and the second section of HTS cable. The cable joint may be in fluid communication with at least one refrigeration module and may include at least one conduit configured to permit a third flow of coolant between said cable joint and said at least one refrigeration module through a coolant line separate from said first and second sections of HTS cable. Other embodiments and implementations are also within the scope of the present disclosure.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: May 16, 2017
    Assignee: American Superconductor Corporation
    Inventors: Jie Yuan, James F. Maguire
  • Patent number: 9646742
    Abstract: A method for cooling high temperature superconducting (HTS) cable comprising receiving a first flow of coolant at a first section of HTS cable and permitting the first flow of coolant to flow therethrough. The method also includes receiving a second flow of coolant at a second section of HTS cable and permitting the second flow of coolant to flow therethrough. The first section of HTS cable and said second section of HTS cable are coupled via a cable joint, the cable joint electrically connecting the first and second sections of HTS cable. The cable joint is in fluid communication with at least one refrigeration module. The cable joint includes at least one conduit configured to permit a third flow of coolant between the cable joint and the at least one refrigeration module through a coolant line separate from the first and second sections of HTS cable.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: May 9, 2017
    Assignee: American Superconductor Corporation
    Inventors: Jie Yuan, James F. Maguire
  • Publication number: 20150364232
    Abstract: A method for cooling high temperature superconducting (HTS) cable comprising receiving a first flow of coolant at a first section of HTS cable and permitting the first flow of coolant to flow therethrough. The method also includes receiving a second flow of coolant at a second section of HTS cable and permitting the second flow of coolant to flow therethrough. The first section of HTS cable and said second section of HTS cable are coupled via a cable joint, the cable joint electrically connecting the first and second sections of HTS cable. The cable joint is in fluid communication with at least one refrigeration module. The cable joint includes at least one conduit configured to permit a third flow of coolant between the cable joint and the at least one refrigeration module through a coolant line separate from the first and second sections of HTS cable.
    Type: Application
    Filed: April 16, 2015
    Publication date: December 17, 2015
    Inventors: Jie Yuan, James F. Maguire
  • Publication number: 20150325338
    Abstract: A cooling system includes a first section of high temperature superconducting (HTS) cable configured to receive a first flow of coolant and to permit the first flow of coolant to flow therethrough. The system may further include a second section of high temperature superconducting (HTS) cable configured to receive a second flow of coolant and to permit the second flow of coolant to flow therethrough. The system may further include a cable joint configured to couple the first section of HTS cable and the second section of HTS cable. The cable joint may be in fluid communication with at least one refrigeration module and may include at least one conduit configured to permit a third flow of coolant between said cable joint and said at least one refrigeration module through a coolant line separate from said first and second sections of HTS cable. Other embodiments and implementations are also within the scope of the present disclosure.
    Type: Application
    Filed: April 16, 2015
    Publication date: November 12, 2015
    Inventors: Jie Yuan, James F. MAGUIRE
  • Patent number: 8731629
    Abstract: A junction box is provided which allows serial connection of the individual conductors of at least one high temperature superconductor (HTS) wire bundle. The junction box includes an electrical interface device disposed within a junction box housing. The interface device is configured receive both ends of each conductor of each HTS wire bundle, and to provide a superconductive electrical connection between respective first ends of conductors to respective second ends of other wire bundle conductors to form at least one superconductive multi-turn electromagnetic winding.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: May 20, 2014
    Assignee: American Superconductor Corporation
    Inventors: Christopher G. King, James F. Maguire
  • Patent number: 8478374
    Abstract: An HTS cable assembly is provided which includes a cryostat or housing, an HTS wire bundle disposed longitudinally within the cryostat, and plural support members disposed between the HTS wire bundle and the cryostat. The support members are elongate, tubular members having resiliency in both the axial and radial directions. The support members are disposed between the HTS wire bundle and the inner surface of the cryostat in an arrangement that maintains and supports the HTS wire bundle in a spaced-apart relationship with respect to the inner surface of the cryostat. In addition, the plural support members are configured to substantially prevent relative movement between the HTS wire bundle and the cryostat.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: July 2, 2013
    Assignee: American Superconductor Corporation
    Inventors: James F. Maguire, Jie Yuan, Christopher G. King
  • Patent number: 8044752
    Abstract: High-current, compact, flexible conductors containing high temperature superconducting (HTS) tapes and methods for making the same are described. The HTS tapes are arranged into a stack, a plurality of stacks are arranged to form a superstructure, and the superstructure is twisted about the cable axis to obtain a HTS cable. The HTS cables of the invention can be utilized in numerous applications such as cables employed to generate magnetic fields for degaussing and high current electric power transmission or distribution applications.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: October 25, 2011
    Assignee: American Superconductor Corporation
    Inventors: Alexander Otto, Ralph P. Mason, James F. Maguire, Jie Yuan
  • Publication number: 20090247411
    Abstract: A junction box is provided which allows serial connection of the individual conductors of at least one high temperature superconductor (HTS) wire bundle. The junction box includes an electrical interface device disposed within a junction box housing. The interface device is configured receive both ends of each conductor of each HTS wire bundle, and to provide a superconductive electrical connection between respective first ends of conductors to respective second ends of other wire bundle conductors to form at least one superconductive multi-turn electromagnetic winding.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 1, 2009
    Applicant: American Superconductor Corporation
    Inventors: Christopher G. King, James F. Maguire
  • Publication number: 20090247412
    Abstract: An HTS cable assembly is provided which includes a cryostat or housing, an HTS wire bundle disposed longitudinally within the cryostat, and plural support members disposed between the HTS wire bundle and the cryostat. The support members are elongate, tubular members having resiliency in both the axial and radial directions. The support members are disposed between the HTS wire bundle and the inner surface of the cryostat in an arrangement that maintains and supports the HTS wire bundle in a spaced-apart relationship with respect to the inner surface of the cryostat. In addition, the plural support members are configured to substantially prevent relative movement between the HTS wire bundle and the cryostat.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 1, 2009
    Applicant: American Superconductor Corporation
    Inventors: James F. Maguire, Jie Yuan, Christopher G. King
  • Patent number: 7453041
    Abstract: A superconducting cable assembly includes a first annular passage disposed concentrically around the superconducting cable and having first and second ends and an inlet, a second annular passage disposed concentrically around the first passage and having first and second ends, wherein at least one of the first and second ends of the second passage is in communication with at least one of the first and second ends of the first passage, the second passage further having an outlet. A coolant provided by a cryogenic refrigeration system is directed through the inlet, passes through the first passage in a first direction, passes through the second passage in a second direction opposite to the first direction and exits the assembly through the outlet. With this arrangement, the superconducting cable is cooled to the critical temperature by coolant flowing through the first passage and the coolant flowing through the second passage intercepts ambient heat so as to act as a heat shield for the first passage.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: November 18, 2008
    Assignee: American Superconductor Corporation
    Inventors: James F. Maguire, Michael McCarthy
  • Publication number: 20080180202
    Abstract: High-current, compact, flexible conductors containing high temperature superconducting (HTS) tapes and methods for making the same are described. The HTS tapes are arranged into a stack, a plurality of stacks are arranged to form a superstructure, and the superstructure is twisted about the cable axis to obtain a HTS cable. The HTS cables of the invention can be utilized in numerous applications such as cables employed to generate magnetic fields for degaussing and high current electric power transmission or distribution applications.
    Type: Application
    Filed: July 23, 2007
    Publication date: July 31, 2008
    Applicant: American Superconductor Company
    Inventors: Alexander Otto, Ralph P. Mason, James F. Maguire, Jie Yuan
  • Patent number: 7304826
    Abstract: A method and system for providing protection for a superconducting electrical cable located in a utility power network includes detecting a fault current on the superconducting electric cable, determining the cumulative total energy dissipated in the superconducting electrical cable from the fault current and at least one prior fault current over a predetermined time period, and determining whether to disconnect the superconducting electrical cable from the utility power network on the basis of the cumulative total energy dissipated.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: December 4, 2007
    Assignees: American Superconductor Corporation, Nexans
    Inventors: Jie Yuan, James F. MaGuire, Arnaud Allais, Frank Schmidt
  • Patent number: 7119644
    Abstract: A superconducting coil assembly is of the type mounted to a rotor assembly of an electric rotating machine and, in operation, is maintained at cryogenic temperatures while the portion of the rotor assembly is maintained above cryogenic temperatures. The superconducting coil assembly includes at least one superconducting winding wound about a longitudinal axis of the coil assembly and having an inner radial surface defining a bore extending through the coil assembly. The coil assembly also includes at least one support member extending across the bore and mechanically coupled to the portion of the rotor assembly and to opposing portions of the inner radial surface of the at least one superconducting winding.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: October 10, 2006
    Assignee: American Superconductor Corporation
    Inventors: Gregory L. Snitchler, Raymond T. Howard, John P. Voccio, Peter M Winn, James F. Maguire, Bruce B. Gamble, Swarn S. Kalsi
  • Patent number: 6873079
    Abstract: A superconducting rotor assembly includes an axial shaft and a winding support structure. A torque tube is connected to this winding support structure. An interconnection assembly mechanically couples the torque tube to the axial shaft. This interconnection assembly is configured to convert a torsional torque load experienced by the torque tube to a tangential torque load which is provided to the axial shaft.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: March 29, 2005
    Assignee: American Superconductor Corporation
    Inventors: James F. Maguire, Peter M. Winn
  • Patent number: 6850269
    Abstract: A process and a system for receiving compressed streaming video image data, simultaneously and continuously from a plurality of mobile sources, which stamp the data with time, location, and source identification. The data is processed by converting the location stamps to road vector identifications. The time, road vector and source are compared with those of other data received previously and being received concurrently to develop and revise a record comprising a reference to the most recent data, for each road vector and the speed of the mobile source. The data is stored and is retrieved by selected road vector, to display a continuous and coherent video image of the most recently recorded view at the selected road vector, together with the speed of the data source.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: February 1, 2005
    Inventor: James F. Maguire
  • Patent number: 6815856
    Abstract: A superconducting rotor assembly includes an axial shaft and a winding support structure. A torque tube is connected to this winding support structure. An interconnection assembly mechanically couples the torque tube to the axial shaft. This interconnection assembly is configured to convert a torsional torque load experienced by the torque tube to a tangential torque load which is provided to the axial shaft.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: November 9, 2004
    Assignee: American Superconductor Corporation
    Inventors: James F. Maguire, Peter M. Winn
  • Publication number: 20040135463
    Abstract: A superconducting rotor assembly includes an axial shaft and a winding support structure. A torque tube is connected to this winding support structure. An interconnection assembly mechanically couples the torque tube to the axial shaft. This interconnection assembly is configured to convert a torsional torque load experienced by the torque tube to a tangential torque load which is provided to the axial shaft.
    Type: Application
    Filed: January 6, 2004
    Publication date: July 15, 2004
    Applicant: American Superconductor Corporation, a Delaware corporation
    Inventors: James F. Maguire, Peter M. Winn
  • Patent number: 6674206
    Abstract: A superconducting rotor assembly includes an axial shaft and a winding support structure. A torque tube is connected to this winding support structure. An interconnection assembly mechanically couples the torque tube to the axial shaft. This interconnection assembly is configured to convert a torsional torque load experienced by the torque tube to a tangential torque load which is provided to the axial shaft.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: January 6, 2004
    Assignee: American Superconductor Corporation
    Inventors: James F. Maguire, Peter M. Winn
  • Patent number: 6625992
    Abstract: A cryogenic cooling system is configured to control the flow of a heat transfer fluid through a remote thermal load, such as a superconducting magnet or rotor. The cryogenic cooling system includes a refrigerator including a cryogenically cooled surface and a cryogenic fluid transport device disposed for circulating a heat transfer fluid between the cryogenically cooled surface and the remote thermal load. The cryogenic fluid transport device advantageously serves as device for providing the necessary mechanical force necessary to move the heat transfer fluid from the cryogenically cooled surface (e.g., end of a cryocooler) to the remote thermal load. Thus, unlike conventional cooling arrangements the heat transfer fluid does not require a phase change.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: September 30, 2003
    Assignee: American Superconductor Corporation
    Inventors: James F. Maguire, Peter M. Winn, Ahmed Sidi-Yekhlef, Jie Yuan
  • Publication number: 20030128275
    Abstract: A process and a system for receiving compressed streaming video image data, simultaneously and continuously from a plurality of mobile sources, which stamp the data with time, location, and source identification. The data is processed by converting the location stamps to road vector identifications. The time, road vector and source are compared with those of other data received previously and being received concurrently to develop and revise a record comprising a reference to the most recent data, for each road vector and the speed of the mobile source. The data is stored and is retrieved by selected road vector, to display a continuous and coherent video image of the most recently recorded view at the selected road vector, together with the speed of the data source.
    Type: Application
    Filed: December 3, 2001
    Publication date: July 10, 2003
    Inventor: James F. Maguire