Patents by Inventor James F. McGinnis

James F. McGinnis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8703200
    Abstract: The present invention provides methods for reducing, reversing or inhibiting neovascularization in a tissue of a mammalian subject having a pathological condition involving neovascularization by administration in vivo of nanoceria particles (cerium oxide nanoparticles) to the subject. The method of the invention is useful, for example, for reducing, treating, reversing or inhibiting neovascularization in ocular tissue such as the retina, macula or cornea; in skin; in synovial tissue; in intestinal tissue; or in bone. In addition, the method of the invention is useful for reducing or inhibiting neovascularization in a neoplasm (tumors), which can be benign or malignant and, where malignant, can be a metastatic neoplasm. As such, the invention provides compositions, which contain nanoceria particles and are useful for reducing, treating, reversing or inhibiting angiogenesis in a mammalian subject.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: April 22, 2014
    Assignee: The Board of Regents of the University of Oklahoma
    Inventors: James F. McGinnis, Xiaohong Zhou, Lily L. Wong, Sudipta Seal
  • Publication number: 20120093931
    Abstract: The present invention provides methods for reducing, reversing or inhibiting neovascularization in a tissue of a mammalian subject having a pathological condition involving neovascularization by administration in vivo of nanoceria particles (cerium oxide nanoparticles) to the subject. The method of the invention is useful, for example, for reducing, treating, reversing or inhibiting neovascularization in ocular tissue such as the retina, macula or cornea; in skin; in synovial tissue; in intestinal tissue; or in bone. In addition, the method of the invention is useful for reducing or inhibiting neovascularization in a neoplasm (tumors), which can be benign or malignant and, where malignant, can be a metastatic neoplasm. As such, the invention provides compositions, which contain nanoceria particles and are useful for reducing, treating, reversing or inhibiting angiogenesis in a mammalian subject.
    Type: Application
    Filed: April 24, 2009
    Publication date: April 19, 2012
    Inventors: James F. McGinnis, Lily L. Wong, Xiaohong Zhou, Sudipta Seal
  • Publication number: 20110111007
    Abstract: The presently claimed and disclosed inventive concept(s) provides methods for reducing, reversing or inhibiting retinal cell degeneration, or neovascularization in tissues of a mammalian subject having a pathological condition involving neovascularization, by administration in vivo of nanoceria particles (cerium oxide nanoparticles) to the subject. The method of the presently claimed and disclosed inventive concept(s) is useful, for example, for reducing, treating, reversing or inhibiting degeneration of retinal cells such as photoreceptor cells or neovascularization in ocular tissue such as the retina, macula or cornea; or other tissues such as, but not limited to, skin, synovial tissue, intestinal tissue, or bone. In addition, the method of the presently claimed and disclosed inventive concept(s) is useful for reducing or inhibiting neovascularization in a neoplasm (tumors), which can be benign or malignant and, where malignant, can be a metastatic neoplasm.
    Type: Application
    Filed: May 3, 2010
    Publication date: May 12, 2011
    Inventors: James F. McGinnis, Xiaohong Zhou, Lily L. Wong, Sudipta Seal
  • Patent number: 7727559
    Abstract: Methods and compositions useful for neuronal protection in retinal cells in vitro and the protection of mammalian cells from reactive oxygen species in vivo are provided. Ultrafine nano-size cerium oxide particles, less than 10 nanometers in diameter, have been provided to decrease reactive oxygen species (ROS) in retina tissue that generates large amounts of ROS. These reactive oxygen species (ROS) are involved in light-induced retina degeneration and age-related macular degeneration (AMD). Cerium oxide nanoparticles have been used to promote the lifespan of retinal neurons and protect the neurons from apoptosis induced by hydrogen peroxide in vitro and in vivo. The neuronal protection in retinal cells is achieved by decreasing generation of intracellular reactive oxygen species (ROS). Thus, cerium oxide particles are used to promote the longevity of retinal neurons in vitro and mammalian cells in vivo.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: June 1, 2010
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: James F. McGinnis, Junping Chen, Lily Wong, Steve Sezate, Sudipta Seal, Swanand Patil
  • Publication number: 20090269410
    Abstract: The present invention provides methods for reducing, reversing or inhibiting neovascularization in a tissue of a mammalian subject having a pathological condition involving neovascularization by administration in vivo of nanoceria particles (cerium oxide nanoparticles) to the subject. The method of the invention is useful, for example, for reducing, treating, reversing or inhibiting neovascularization in ocular tissue such as the retina, macula or cornea; in skin; in synovial tissue; in intestinal tissue; or in bone. In addition, the method of the invention is useful for reducing or inhibiting neovascularization in a neoplasm (tumors), which can be benign or malignant and, where malignant, can be a metastatic neoplasm. As such, the invention provides compositions, which contain nanoceria particles and are useful for reducing, treating, reversing or inhibiting angiogenesis in a mammalian subject.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 29, 2009
    Inventors: James F. McGinnis, Lily L. Wong, Xiaohong Zhou
  • Patent number: 7347987
    Abstract: Methods and compositions useful for neuronal protection in retinal cells in vitro and the protection of mammalian cells from reactive oxygen species in vivo are provided. Ultrafine nano-size cerium oxide particles, less than 10 nanometers in diameter, have been provided to decrease reactive oxygen species (ROS) in retina tissue that generates large amounts of ROS. These reactive oxygen species (ROS) are involved in light-induced retina degeneration and age-related macular degeneration (AMD). Cerium oxide nanoparticles have been used to promote the lifespan of retinal neurons and protect the neurons from apoptosis induced by hydrogen peroxide in vitro and in vivo. The neuronal protection in retinal cells is achieved by decreasing generation of intracellular reactive oxygen species (ROS). Thus, cerium oxide particles are used to promote the longevity of retinal neurons in vitro and mammalian cells in vivo.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: March 25, 2008
    Assignees: University of Central Florida Research Foundation, Inc., University of Oklahoma
    Inventors: James F. McGinnis, Junping Chen, Lily Wong, Steve Sezate, Sudipta Seal, Swanand Patil