Patents by Inventor James F. White

James F. White has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210000121
    Abstract: Endophytic bacteria, compositions comprising the same, and methods of use thereof are disclosed which increase the root and shoot growth of grass hosts, suppress growth of soil borne fungal pathogens of host plants, increase resistance of the grass to diseases and reduce competitiveness of distantly related competitor weeds of the crop.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 7, 2021
    Inventors: James F. White, JR., Kurt P. Kowalski, Kathryn Kingsley
  • Patent number: 10721936
    Abstract: Endophytic bacteria, compositions comprising the same, and methods of use thereof are disclosed which increase the root and shoot growth of grass hosts, suppress growth of soil borne fungal pathogens of host plants, increase resistance of the grass to diseases and reduce competitiveness of distantly related competitor weeds of the crop.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: July 28, 2020
    Assignees: Rutgers, The State University of NJ, United States Geological Survey
    Inventors: James F. White, Jr., Kurt P. Kowalski, Kathryn Kingsley
  • Publication number: 20180020672
    Abstract: Endophytic bacteria, compositions comprising the same, and methods of use thereof are disclosed which increase the root and shoot growth of grass hosts, suppress growth of soil borne fungal pathogens of host plants, increase resistance of the grass to diseases and reduce competitiveness of distantly related competitor weeds of the crop.
    Type: Application
    Filed: July 21, 2017
    Publication date: January 25, 2018
    Inventors: James F. White, JR., Kurt P. Kowalski, Kathryn Kingsley
  • Publication number: 20170113993
    Abstract: This disclosure relates to methods for converting homocitric acid to adipic acid, and more particularly to methods of using metal catalysts to catalyze the conversion of homocitric acid to adipic acid.
    Type: Application
    Filed: June 10, 2015
    Publication date: April 27, 2017
    Inventors: Ralph Thomas BAKER, James F. WHITE, Leo E. MANZER, Spyridon NTAIS, Olena BARANOVA, Indira THAPA, Man Kit LAU, Cathy Staloch HASS
  • Patent number: 9260403
    Abstract: Provided are methods of producing 2,5-furandicarboxylic acid (FDCA) from renewable sources such as seaweed, alginate, oligoalginate, pectin, oligopectin, polygalacturonate, galacturonate, and/or oligogalacturonate. The sugars in the renewable sources can be converted into one or more intermediates such as 4-deoxy-L-erythro-5-hexoseulose uronate (DEHU), 4-deoxy-L-threo-5-hexosulose uronate (DTHU), 5-hydroxymethyl furfural (HMF), 2,5-dihydroxymethyl furan (DHMF), and 5-formyl-2-furancarboxylic acid (FFA), which can be converted into FDCA by dehydration and cyclization to produce 5-formyl-2-furancarboxylic acid (FFA), followed by oxidation to produce FDCA. DEHU or DTHU may also be converted into FDCA by oxidation to produce 2,3-dihydroxy-5-oxohexanedioic acid (DOHA), which then undergoes dehydration and cyclization to produce FDCA.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: February 16, 2016
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Yasuo Yoshikuni, Susan R. Cooper, Adam J. Wargacki, Leo E. Manzer, James F. White, Lou Kapicak, Dennis J. Miller, Lars Peereboom
  • Patent number: 9018127
    Abstract: A reduced metallic catalyst or pre-activated catalyst is formed by contacting a precursor catalyst or a reduced metallic catalyst with a modifier solution in the presence of a source of hydrogen and heat treating the precursor catalyst or the reduced metallic catalyst at super-atmospheric pressure to obtain the reduced metallic catalyst from the precursor catalyst or the pre-activated catalyst from the reduced metallic catalyst. A method of hydrogenating a hydrogenatable precursor includes providing a reduced metallic catalyst or the pre-activated catalyst prepared with modifier buffer and contacting the reduced metallic catalyst or pre-activated catalyst with the hydrogenatable precursor in the presence of hydrogen and, optionally, in the presence of a modifier solution.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: April 28, 2015
    Assignee: BioAmber International S.a.r.l.
    Inventors: Setrak K. Tanielyan, Robert L. Augustine, Leo E. Manzer, James F. White, Ramesh D. Bhagat, Balaraju Miryala
  • Patent number: 9012699
    Abstract: Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: April 21, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Johnathan E. Holladay, Danielle S. Muzatko, James F. White, Alan H. Zacher
  • Patent number: 8907135
    Abstract: The present disclosure relates to facilities, systems, methods and/or catalysts for use in chemical production. In particular, the disclosure provides innovations relating to dehydration of multihydric compounds such as glycerol to form acrolein. Some of these innovations include continuous reaction systems as well as system parameters that allow for long term production.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: December 9, 2014
    Assignee: Battelle Memorial Institute
    Inventors: James J. Strohm, Alan H. Zacher, James F. White, Michel J. Gray, Vanessa Lebarbier
  • Patent number: 8882990
    Abstract: Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: November 11, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Richard T. Hallen, Karl O. Albrecht, Heather M. Brown, James F. White
  • Publication number: 20140295508
    Abstract: Provided are methods of producing 2,5-furandicarboxylic acid (FDCA) from renewable sources such as seaweed, alginate, oligoalginate, pectin, oligopectin, polygalacturonate, galacturonate, and/or oligogalacturonate. The sugars in the renewable sources can be converted into one or more intermediates such as 4-deoxy-L-erythro-5-hexoseulose uronate (DEHU), 4-deoxy-L-threo-5-hexosulose uronate (DTHU), 5-hydroxymethyl furfural (HMF), 2,5-dihydroxymethyl furan (DHMF), and 5-formyl-2-furancarboxylic acid (FFA), which can be converted into FDCA by dehydration and cyclization to produce 5-formyl-2-furancarboxylic acid (FFA), followed by oxidation to produce FDCA. DEHU or DTHU may also be converted into FDCA by oxidation to produce 2,3-dihydroxy-5-oxohexanedioic acid (DOHA), which then undergoes dehydration and cyclization to produce FDCA.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Inventors: Yasuo Yoshikuni, Susan R. Cooper, Adam J. Wargacki, Leo E. Manzer, James F. White, Lou Kapicak, Dennis J. Miller, Lars Peereboom
  • Publication number: 20140249335
    Abstract: Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.
    Type: Application
    Filed: May 9, 2014
    Publication date: September 4, 2014
    Applicant: Battelle Memorial Institute
    Inventors: Johnathan E. Holladay, Danielle S. Muzatko, James F. White, Alan H. Zacher
  • Patent number: 8754266
    Abstract: Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: June 17, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Johnathan E. Holladay, Danielle S. Muzatko, James F. White, Alan H. Zacher
  • Patent number: 8742144
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: June 3, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, James F. White, Michel J. Gray
  • Publication number: 20130253231
    Abstract: Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 26, 2013
    Applicant: Battelle Memorial Institute
    Inventors: Johnathan E. Holladay, Danielle S. Muzatko, James F. White, Alan H. Zacher
  • Publication number: 20130253227
    Abstract: The present disclosure relates to facilities, systems, methods and/or catalysts for use in chemical production. In particular, the disclosure provides innovations relating to dehydration of multihydric compounds such as glycerol to form acrolein. Some of these innovations include continuous reaction systems as well as system parameters that allow for long term production.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 26, 2013
    Applicant: Battelle Momerial Institute
    Inventors: James J. Strohm, Alan H. Zacher, James F. White, Michel J. Gray, Vanessa Lebarbier
  • Patent number: 8530703
    Abstract: The present disclosure relates to facilities, systems, methods and/or catalysts for use in chemical production. In particular, the disclosure provides innovations relating to dehydration of multihydric compounds such as glycerol to form acrolein. Some of these innovations include continuous reaction systems as well as system parameters that allow for long term production.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: September 10, 2013
    Assignee: Battelle Memorial Institute
    Inventors: James J. Strohm, Alan H. Zacher, James F. White, Michel J. Gray, Vanessa Lebarbier
  • Patent number: 8501963
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methyl pyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: August 6, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Todd A. Werpy, John G. Frye, Jr., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Patent number: 8388829
    Abstract: Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 5, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Richard T. Hallen, Karl O. Albrecht, Heather M. Brown, James F. White
  • Patent number: 8366907
    Abstract: Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: February 5, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Richard T. Hallen, Karl O. Albrecht, Heather M. Brown, James F. White
  • Patent number: 8367851
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 5, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, James F. White, Michel J. Gray