Patents by Inventor James G. Blencoe
James G. Blencoe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12091727Abstract: An improved beta(?)-spodumene (˜LiAlSi2O6) nitric acid conversion process produces discrete lithium (Li), aluminum (Al) and silica (SiO2) materials by: (i) converting lithium nitrate, LiNO3, to lithium carbonate, Li2CO3; (ii) creating a Al-rich precipitate either by thermally decomposing aluminum nitrate, Al(NO3)3, or by reacting Al(NO3)3 with aqueous and/or solid ammonium carbonate, (NH4)2CO3; and (iii) forming a solid SiO2-rich aluminosilicate residue by selectively leaching Li and Al from ?-spodumene. Three key reactants consumed during processing—nitric acid (HNO3), ammonia (NH3), and magnesium oxide (MgO)—may be regenerated internally by closed-loop chemical cycles, this feature of the process greatly improving its economics in commercial applications.Type: GrantFiled: September 29, 2023Date of Patent: September 17, 2024Inventors: James G. Blencoe, Arend Groen
-
Publication number: 20240132991Abstract: An improved beta(?)-spodumene (˜LiAlSi2O6) nitric acid conversion process produces discrete lithium (Li), aluminum (Al) and silica (SiO2) materials by: (i) converting lithium nitrate, LiNO3, to lithium carbonate, Li2CO3; (ii) creating a Al-rich precipitate either by thermally decomposing aluminum nitrate, Al(NO3)3, or by reacting Al(NO3)3 with aqueous and/or solid ammonium carbonate, (NH4)2CO3; and (iii) forming a solid SiO2-rich aluminosilicate residue by selectively leaching Li and Al from ?-spodumene. Three key reactants consumed during processing—nitric acid (HNO3), ammonia (NH3), and magnesium oxide (MgO)—may be regenerated internally by closed-loop chemical cycles, this feature of the process greatly improving its economics in commercial applications.Type: ApplicationFiled: September 29, 2023Publication date: April 25, 2024Inventors: James G. Blencoe, Arend Groen
-
Patent number: 11634337Abstract: A process for the chemical conversion of contaminated magnesium hydroxide to high purity solutions of magnesium bicarbonate include steps of providing an impure reagent including at least 40% and less than 95% by total weight of total metals of magnesium in a form of solid magnesium hydroxide and at least 10% by weight of total metals of calcium carbonate, combining the impure reagent containing the solid magnesium hydroxide with carbonic acid in water, thereby generating magnesium bicarbonate and water and then filtering out solid calcium carbonate leaving a solution of magnesium bicarbonate in water having a by weight ratio of Mg/(Mg+Ca) in the solution of greater than 95%. Heating and/or drying the magnesium bicarbonate solution produces correspondingly high purity magnesium carbonate.Type: GrantFiled: August 13, 2020Date of Patent: April 25, 2023Inventors: Randall P. Moore, Kevin B. Jackson, James G. Blencoe
-
Publication number: 20220048784Abstract: A process for the chemical conversion of contaminated magnesium hydroxide to high purity solutions of magnesium bicarbonate include steps of providing an impure reagent including at least 40% and less than 95% by total weight of total metals of magnesium in a form of solid magnesium hydroxide and at least 10% by weight of total metals of calcium carbonate, combining the impure reagent containing the solid magnesium hydroxide with carbonic acid in water, thereby generating magnesium bicarbonate and water and then filtering out solid calcium carbonate leaving a solution of magnesium bicarbonate in water having a by weight ratio of Mg/(Mg+Ca) in the solution of greater than 95%. Heating and/or drying the magnesium bicarbonate solution produces correspondingly high purity magnesium carbonate.Type: ApplicationFiled: August 13, 2020Publication date: February 17, 2022Inventors: Randall P. Moore, Kevin B. Jackson, James G. Blencoe
-
Patent number: 10632418Abstract: In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).Type: GrantFiled: June 28, 2017Date of Patent: April 28, 2020Assignee: UT-BATTELLE, LLCInventors: James G. Blencoe, Donald A. Palmer, Lawrence M. Anovitz, James S. Beard
-
Publication number: 20170291139Abstract: In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).Type: ApplicationFiled: June 28, 2017Publication date: October 12, 2017Applicants: UT-BATTELLE, LLC, UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION, VIRGINIA MUSEUM OF NATURAL HISTORY FOUNDATIONInventors: James G. BLENCOE, Donald A. PALMER, Lawrence M. ANOVITZ, James S. BEARD
-
Patent number: 9718693Abstract: In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).Type: GrantFiled: January 30, 2014Date of Patent: August 1, 2017Assignees: UT-BATTELLE, LLC, VIRGINIA MUSEUM OF NATURAL HISTORY FOUNDATION, UNIVERSITY OF TENNESSEE RESEARCH FOUNDATIONInventors: James G. Blencoe, Donald A. Palmer, Lawrence M. Anovitz, James S. Beard
-
Publication number: 20140147371Abstract: In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).Type: ApplicationFiled: January 30, 2014Publication date: May 29, 2014Applicants: UT-BATTELLE, LLC, VIRGINA MUSEUM OF NATURAL HISTORY FOUNDATION, UNIVERSITY OF TENNESSEE RESEARCH FOUNDATIONInventors: James G. Blencoe, Donald A. Palmer, Lawrence M. Anovitz, James S. Beard
-
Patent number: 8673256Abstract: In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).Type: GrantFiled: January 30, 2012Date of Patent: March 18, 2014Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation, Virginia Museum of Natural HistoryInventors: James G. Blencoe, Donald A. Palmer, Lawrence M. Anovitz, James S. Beard
-
Publication number: 20130056916Abstract: A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.Type: ApplicationFiled: February 29, 2012Publication date: March 7, 2013Inventors: James G. Blencoe, Lawrence M. Anovitz, Donald A. Palmer, James S. Beard
-
Publication number: 20120128571Abstract: In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).Type: ApplicationFiled: January 30, 2012Publication date: May 24, 2012Applicants: UT-BATTELLE, LLC, Virginia Museum of Natural History Foundation, University of Tennessee Research FoundationInventors: James G. Blencoe, Donald A. Palmer, Lawrence M. Anovitz, James S. Beard
-
Patent number: 8152895Abstract: A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.Type: GrantFiled: February 22, 2010Date of Patent: April 10, 2012Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation, Virginia Museum of Natural History FoundationInventors: James G. Blencoe, Lawrence M. Anovitz, Donald A. Palmer, James S. Beard
-
Patent number: 8114374Abstract: In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).Type: GrantFiled: January 17, 2008Date of Patent: February 14, 2012Assignees: U.T. Battelle, LLC., University of Tennessee Research Foundation, Virginia Museum of Natrual History FoundationInventors: James G. Blencoe, Donald A. Palmer, Lawrence M. Anovitz, James S. Beard
-
Patent number: 7972584Abstract: Magnesiothermic methods of producing solid silicon are provided. In a first embodiment, solid silica and magnesium gas are reacted at a temperature from 400° C. to 1000° C. to produce solid silicon and solid magnesium oxide, the silicon having a purity from 98.0 to 99.9999%. The silicon is separated from the magnesium oxide using an electrostatic technology. In a second embodiment, the solid silicon is reacted with magnesium gas to produce solid magnesium silicide. The magnesium silicide is contacted with hydrogen chloride gas or hydrochloric acid to produce silane gas. The silane gas is thermally decomposed to produce solid silicon and hydrogen gas, the silicon having a purity of at least 99.9999%. The solid silicon and hydrogen gas are separated into two processing streams. The hydrogen gas is recycled for reaction with chlorine gas to produce hydrogen chloride gas.Type: GrantFiled: August 25, 2009Date of Patent: July 5, 2011Assignee: Orion Laboratories, LLCInventor: James G. Blencoe
-
Publication number: 20100233017Abstract: A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.Type: ApplicationFiled: February 22, 2010Publication date: September 16, 2010Applicants: UT-BATTELLE, LLC, UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION, VIRGINIA MUSEUM OF NATURAL HISTORY FOUNDATIONInventors: James G. Blencoe, Lawrence M. Anovitz, Donald A. Palmer, James S. Beard
-
Publication number: 20100158782Abstract: Magnesiothermic methods of producing solid silicon are provided. In a first embodiment, solid silica and magnesium gas are reacted at a temperature from 400° C. to 1000° C. to produce solid silicon and solid magnesium oxide, the silicon having a purity from 98.0 to 99.9999%. The silicon is separated from the magnesium oxide using an electrostatic technology. In a second embodiment, the solid silicon is reacted with magnesium gas to produce solid magnesium silicide. The magnesium silicide is contacted with hydrogen chloride gas or hydrochloric acid to produce silane gas. The silane gas is thermally decomposed to produce solid silicon and hydrogen gas, the silicon having a purity of at least 99.9999%. The solid silicon and hydrogen gas are separated into two processing streams. The hydrogen gas is recycled for reaction with chlorine gas to produce hydrogen chloride gas.Type: ApplicationFiled: August 25, 2009Publication date: June 24, 2010Applicant: ORION LABORATORIES, LLCInventor: James G. Blencoe
-
Publication number: 20100122747Abstract: Compressed hydrogen gas can be stored and transferred in hollow structures with walls that include at least one layer or interlayer of at least one porous metal, the purpose of the latter being to protect one or more surrounding layers from the damage that can be caused by diffusive flux of hydrogen gas. The masses of hydrogen gas that enter the layer(s)/interlayer(s) of the porous metal(s) are continuously or periodically removed from the interconnected pore space in the layer(s)/interlayer(s) of the porous metal(s) to ensure that the pressure(s) of the hydrogen gas remain(s) low—generally less than or equal to one atmosphere. When the structure that holds compressed hydrogen gas is a cylindrical pressure vessel, pipe or pipeline, a manufacturing technique known as “C-forming” can be used to create a wall that contains at least one layer or interlayer of at least one porous metal.Type: ApplicationFiled: November 16, 2009Publication date: May 20, 2010Applicant: Hydrogen Discoveries, Inc.Inventor: James G. Blencoe
-
Patent number: 7666250Abstract: A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.Type: GrantFiled: April 29, 2005Date of Patent: February 23, 2010Assignees: UT-Battelle, LLC, University of Tenessee Research Foundation, Virginia Museum of Natural History FoundationInventors: James G. Blencoe, Lawrence M. Anovitz, Donald A. Palmer, James S. Beard
-
Publication number: 20080233010Abstract: Apparatus and methods for testing the hydrogen-gas compatibilities, hydrogen-gas embrittlement susceptibilities, hydrogen-gas containment performances, and/or the hydrogen-gas pressure-cycling durabilities, of hollow enclosures (“test specimens”), with single-layer, double-layer, or multi-layer walls, composed of various barrier materials, are disclosed. Barrier materials include but are not limited to: carbon steel, stainless steel, copper, aluminum, a polymeric material (e.g., high-density polyethylene), and a liquid material (e.g., water, or an aqueous solution). The test gas is either high-purity hydrogen or a hydrogen-bearing gas mixture (e.g., hydrogen gas mixed with methane/natural gas and/or biomethane). A key piece of the testing equipment is an enclosure that surrounds the test specimen. Fabricated from high-strength, porous solid material (e.g.Type: ApplicationFiled: March 18, 2008Publication date: September 25, 2008Applicant: HYDROGEN DISCOVERIES, INC.Inventors: James G. Blencoe, Michael Naney
-
Publication number: 20080121643Abstract: Enhanced containment, capture, transfer, and storage of hydrogen gas in sealed enclosures is achieved using multi-layered materials comprising polymer(s), metal(s), metal alloy(s) and/or metal oxide(s) that either form, line, or coat the wall(s) of the sealed enclosures. These composite materials decrease “loss” of hydrogen gas by combining equilibrium and kinetic barriers to hydrogen diffusion. Capture and separation of gaseous hydrogen permeating through the wall(s) of an enclosure is accomplished by trapping the gas in either one or more internal liquid layers, or in one or more attached, gas-tight covers. Tightly packed sets of sealed enclosures, especially pipes or tubes with one or more polymer/metal±metal oxide/liquid layers or interlayers can be placed in hydrogen “warehouses” and/or “silos” to provide seasonally firmed supplies of hydrogen gas to local or city-gate markets.Type: ApplicationFiled: September 10, 2007Publication date: May 29, 2008Applicant: HYDROGEN DISCOVERIES, INC.Inventors: James G. Blencoe, Simon L. Marshall