Patents by Inventor James G Champlain

James G Champlain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10192979
    Abstract: A device having: a substrate having a dielectric surface; a gate electrode; a drain electrode; a source electrode having a conductive contact and a two-dimensional material edge; and a dielectric material between the source and the gate. The source is adjacent to the gate. The drain electrode is not laterally between the edge and the gate electrode, and the distance from the drain electrode to the edge is greater than the distance from the gate electrode to the edge. The edge does not contact any other component of the device. The gate, drain, and source are not in electrical contact with each other. There is a line of sight or electron path from the edge to the drain electrode.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: January 29, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jonathan L. Shaw, John Bradley Boos, Kevin Jensen, James G. Champlain, Bradford B. Pate, Byoung-don Kong, Doewon Park, Joan E. Yater
  • Publication number: 20170012103
    Abstract: A device having: a substrate having a dielectric surface; a gate electrode; a drain electrode; a source electrode having a conductive contact and a two-dimensional material edge; and a dielectric material between the source and the gate. The source is adjacent to the gate. The drain electrode is not laterally between the edge and the gate electrode, and the distance from the drain electrode to the edge is greater than the distance from the gate electrode to the edge. The edge does not contact any other component of the device. The gate, drain, and source are not in electrical contact with each other. There is a line of sight or electron path from the edge to the drain electrode.
    Type: Application
    Filed: July 11, 2016
    Publication date: January 12, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jonathan L. Shaw, John Bradley Boos, Kevin Jensen, James G. Champlain, Bradford B. Pate, Byoung-don Kong, Doewon Park, Joan E. Yater
  • Patent number: 9054169
    Abstract: An InGaAs n-channel quantum well heterostructure for use in a complementary transistor having a Sb-based p-channel. The heterostructure includes a buffer layer having a lattice constant intermediate that of the n- and p-channel materials and which is configured to accommodate the strain produced by a lattice-constant mismatch between the n-channel and p-channel materials.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: June 9, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Brian R. Bennett, John Bradley Boos, Theresa F. Chick, James G. Champlain
  • Publication number: 20150014745
    Abstract: An InGaAs n-channel quantum well heterostructure for use in a complementary transistor having a Sb-based p-channel. The heterostructure includes a buffer layer having a lattice constant intermediate that of the n- and p-channel materials and which is configured to accommodate the strain produced by a lattice-constant mismatch between the n-channel and p-channel materials.
    Type: Application
    Filed: October 2, 2014
    Publication date: January 15, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brian R. Bennett, John Bradley Boos, Theresa F. Chick, James G. Champlain
  • Patent number: 8884265
    Abstract: An InGaAs n-channel quantum well heterostructure for use in a complementary transistor having a Sb-based p-channel. The heterostructure includes a buffer layer having a lattice constant intermediate that of the n- and p-channel materials and which is configured to accommodate the strain produced by a lattice-constant mismatch between the n-channel and p-channel materials.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: November 11, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Brian R. Bennett, John Bradley Boos, Theresa F. Chick, James G. Champlain
  • Publication number: 20140264278
    Abstract: An InGaAs n-channel quantum well heterostructure for use in a complementary transistor having a Sb-based p-channel. The heterostructure includes a buffer layer having a lattice constant intermediate that of the n- and p-channel materials and which is configured to accommodate the strain produced by a lattice-constant mismatch between the n-channel and p-channel materials.
    Type: Application
    Filed: January 16, 2014
    Publication date: September 18, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brian R. Bennett, John Bradley Boos, Theresa F. Chick, James G. Champlain
  • Patent number: 8652959
    Abstract: A complementary metal oxide semiconductor (CMOS) device in which a single InxGa1-xSb quantum well serves as both an n-channel and a p-channel in the same device and a method for making the same. The InxGa1-xSb layer is part of a heterostructure that includes a Te-delta doped AlyGa1-ySb layer above the InxGa1-xSb layer on a portion of the structure. The portion of the structure without the Te-delta doped AlyGa1-ySb barrier layer can be fabricated into a p-FET by the use of appropriate source, gate, and drain terminals, and the portion of the structure retaining the Te-delta doped AlyGa1-ySb layer can be fabricated into an n-FET so that the structure forms a CMOS device, wherein the single InxGa1-xSb quantum well serves as the transport channel for both the n-FET portion and the p-FET portion of the heterostructure.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: February 18, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Brian R. Bennett, John Bradley Boos, Mario Ancona, James G. Champlain, Nicolas A. Papanicolaou
  • Publication number: 20130149845
    Abstract: A complementary metal oxide semiconductor (CMOS) device in which a single InxGa1-xSb quantum well serves as both an n-channel and a p-channel in the same device and a method for making the same. The InxGa1-xSb layer is part of a heterostructure that includes a Te-delta doped AlyGa1-ySb layer above the InxGa1-xSb layer on a portion of the structure. The portion of the structure without the Te-delta doped AlyGa1-ySb barrier layer can be fabricated into a p-FET by the use of appropriate source, gate, and drain terminals, and the portion of the structure retaining the Te-delta doped AlyGa1-ySb layer can be fabricated into an n-FET so that the structure forms a CMOS device, wherein the single InxGa1-xSb quantum well serves as the transport channel for both the n-FET portion and the p-FET portion of the heterostructure.
    Type: Application
    Filed: February 1, 2013
    Publication date: June 13, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brian R. Bennett, John Bradley Boos, Mario Ancona, James G. Champlain, Nicolas A. Papanicolaou
  • Patent number: 8461664
    Abstract: A complementary metal oxide semiconductor (CMOS) device in which a single InxGa1-xSb quantum well serves as both an n-channel and a p-channel in the same device and a method for making the same. The InxGa1-xSb layer is part of a heterostructure that includes a Te-delta doped AlyGa1-ySb layer above the InxGa1-xSb layer on a portion of the structure. The portion of the structure without the Te-delta doped AlyGa1-ySb barrier layer can be fabricated into a p-FET by the use of appropriate source, gate, and drain terminals, and the portion of the structure retaining the Te-delta doped AlyGa1-ySb layer can be fabricated into an n-FET so that the structure forms a CMOS device, wherein the single InxGa1-xSb quantum well serves as the transport channel for both the n-FET portion and the p-FET portion of the heterostructure.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: June 11, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Brian R. Bennett, John Bradley Boos, Mario Ancona, James G. Champlain, Nicolas A Papanicolaou
  • Patent number: 8076700
    Abstract: This disclosure describes a semiconductor device that can be used as a mixer at RF frequencies extending from a few tens of GHz into the THz frequency range. The device is composed of narrow bandgap semiconductors grown by solid source molecular beam epitaxy. The device can comprise a GaSb substrate, a AlSb layer on the GaSb substrate, a In0.69Al0.31As0.41Sb0.59 layer, on the AlSb layer and wherein the In0.69Al0.31As0.41Sb0.59 comprises varying levels of Te doping, a In0.27Ga0.73Sb layer on the In0.69Al0.31As0.41 Sb0.59 layer, wherein the In0.27Ga0.73Sb layer is Be doped, wherein the first section of the In0.69Al0.31As0.41Sb0.59 layer has is Te doped, wherein the second section of the In0.69Al0.31As0.41Sb0.59 layer has a grade in Te concentration, and wherein the third section of the In0.69Al0.31As0.41Sb0.59 layer is Te doped.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: December 13, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Richard Magno, Mario Ancona, John Bradley Boos, James G Champlain, Harvey S Newman
  • Publication number: 20110297916
    Abstract: A complementary metal oxide semiconductor (CMOS) device in which a single InxGa1-xSb quantum well serves as both an n-channel and a p-channel in the same device and a method for making the same. The InxGa1-xSb layer is part of a heterostructure that includes a Te-delta doped AlyGa1-ySb layer above the InxGa1-xSb layer on a portion of the structure. The portion of the structure without the Te-delta doped AlyGa1-ySb barrier layer can be fabricated into a p-FET by the use of appropriate source, gate, and drain terminals, and the portion of the structure retaining the Te-delta doped AlyGa1-ySb layer can be fabricated into an n-FET so that the structure forms a CMOS device, wherein the single InxGa1-xSb quantum well serves as the transport channel for both the n-FET portion and the p-FET portion of the heterostructure.
    Type: Application
    Filed: May 25, 2011
    Publication date: December 8, 2011
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brian R. Bennett, John Bradley Boos, Mario Ancona, James G. Champlain, Nicolas A. Papanicolaou
  • Publication number: 20090302352
    Abstract: This disclosure describes a semiconductor device that can be used as a mixer at RF frequencies extending from a few tens of GHz into the THz frequency range. The device is composed of narrow bandgap semiconductors grown by solid source molecular beam epitaxy. The device can comprise a GaSb substrate, a AlSb layer on the GaSb substrate, a In0.69Al0.31As0.41Sb0.59 layer, on the AlSb layer and wherein the In0.69Al0.31As0.41Sb0.59 comprises varying levels of Te doping, a In0.27Ga0.73Sb layer on the In0.69Al0.31As0.41 Sb0.59 layer, wherein the In0.27Ga0.73Sb layer is Be doped, wherein the first section of the In0.69Al0.31As0.41Sb0.59 layer has is Te doped, wherein the second section of the In0.69Al0.31As0.41Sb0.59 layer has a grade in Te concentration, and wherein the third section of the In0.69Al0.31As0.41Sb0.59 layer is Te doped.
    Type: Application
    Filed: June 2, 2009
    Publication date: December 10, 2009
    Applicant: The Government of the United States of America, as represenied by the Secretary of the Navy
    Inventors: Richard Magno, Mario Ancona, John Bradley Boos, James G. Champlain, Harvey S. Newman