Patents by Inventor James G. Fiorenza

James G. Fiorenza has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240097016
    Abstract: Integrated circuits can include compound semiconductor devices having conductive components that control electrical characteristics of the compound semiconductor devices. In one or more examples, one or more conductive components can be located to increase the concentration of electrons in relation to a source electrical contact or a drain electrical contact. In one or more additional examples, a conductive component can be located to reduce the concentration of electrons in relation to a gate electrical contact. The compound semiconductor devices can include a number of compound semiconductor layers that include one or more materials having at least one Group 13 element and at least one Group 15 element.
    Type: Application
    Filed: December 2, 2021
    Publication date: March 21, 2024
    Inventors: James G. Fiorenza, Daniel Piedra, Joshua Andrew Perozek
  • Publication number: 20230377882
    Abstract: During gallium nitride (GaN) semiconductor fabrication, a nucleation layer, e.g., aluminum nitride (AlN) may be formed superjacent a substrate, e.g., silicon carbide (SiC). Next, a semiconductor layer, such as including GaN, may be formed over the nucleation layer. This disclosure describes various techniques for forming a thick enough layer of gallium nitride (GaN) to ensure complete coalescence and minimal surface roughness, then removing the excess GaN until a desired thickness is achieved. In some examples, the GaN removal may be performed by desorption, such as may be performed in-situ by using hydrogen gas close to the growth temperature.
    Type: Application
    Filed: May 12, 2023
    Publication date: November 23, 2023
    Inventors: James G. Fiorenza, Daniel Piedra
  • Publication number: 20230317801
    Abstract: A semiconductor device includes a layer of a first semiconducting material, where the first semiconducting material is epitaxially grown to have a crystal structure of a first substrate. The semiconductor device further includes a layer of a second semiconducting material disposed adjacent to the layer of the first semiconducting material to form a heterojunction with the layer of the first semiconducting material. The semiconductor device further includes a first component that is electrically coupled to the heterojunction, and a second substrate that is bonded to the layer of the first semiconducting material.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Inventors: Puneet Srivastava, James G. Fiorenza
  • Publication number: 20230299156
    Abstract: In one or more implementations, a semiconductor device can include a first compound semiconductor device coupled to a second compound semiconductor device coupled in a face-to-face arrangement. The first compound semiconductor device can be coupled to the second compound semiconductor device such that a cavity is formed that includes a first gate electrical contact of the first compound semiconductor device and a second gate electrical contact of the second compound semiconductor device. A gap can be present between the first gate electrical contact and the second gate electrical contact.
    Type: Application
    Filed: September 14, 2021
    Publication date: September 21, 2023
    Inventors: James G. Fiorenza et al., Daniel Piedra
  • Publication number: 20230299172
    Abstract: Techniques are described for forming a sealed cavity within a semiconductor wafer, where a conductor wafer includes a structure, such as a T-gate electrode or passive component, formed over a substrate. The sealed-cavity structure may be embedded into the wafer without interfering with any subsequent processes. That is, once the cavity is closed, any subsequent backend processes may continue as usual.
    Type: Application
    Filed: March 17, 2022
    Publication date: September 21, 2023
    Inventors: Yingqi Jiang, James G. Fiorenza
  • Publication number: 20230154875
    Abstract: Gallium nitride-based monolithic microwave integrated circuits (MMICs) can comprise aluminum-based metals. Electrical contacts for gates, sources, and drains of transistors can include aluminum-containing metallic materials. Additionally, connectors, inductors, and interconnect devices can also comprise aluminum-based metals. The gallium-based MMICs can be manufactured in complementary metal oxide semiconductor (CMOS) facilities with equipment that produces silicon-based semiconductor devices.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 18, 2023
    Inventors: Daniel Piedra, James G. Fiorenza, Puneet Srivastava, Andrew Proudman, Kenneth Flanders, Denis Michael Murphy, Leslie P. Green, Peter R. Stubler
  • Publication number: 20230141865
    Abstract: A lateral GaN superjunction transistor or switching device that is configured to have higher breakdown voltage and lower on-resistance as compared to other GaN-based switching devices. The lateral GaN superjunction transistor includes a heavily doped buried implant region (hereinafter, “buried implant region”) in the substrate underlying the transistor that operates as backside field plate (BFP) to control or reduce gate-drain electric fields at the surface of the transistor, thereby enabling the transistor to operate at higher voltages while reducing charge trapping and breakdown effects. The lateral GaN superjunction transistor operates similarly to a vertical silicon superjunction FET to enable operation of the transistor at higher voltages than other GaN or semiconductor devices, such as to enable the construction of faster or higher power electronic circuits.
    Type: Application
    Filed: October 25, 2022
    Publication date: May 11, 2023
    Inventors: James G. Fiorenza, Daniel Piedra, Leonard Shtargot, F. Jacob Steigerwald
  • Publication number: 20230133481
    Abstract: Gallium nitride-based monolithic microwave integrated circuits (MMICs) can comprise aluminum-based metals. Electrical contacts for gates, sources, and drains of transistors can include aluminum-containing metallic materials. Additionally, connectors, inductors, and interconnect devices can also comprise aluminum-based metals. The gallium-based MMICs can be manufactured in complementary metal oxide semiconductor (CMOS) facilities with equipment that produces silicon-based semiconductor devices.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 4, 2023
    Inventors: Daniel Piedra, James G. Fiorenza, Puneet Srivastava, Andrew Proudman, Kenneth Flanders, Denis Michael Murphy, Leslie P. Green, Peter R. Stubler
  • Patent number: 11637096
    Abstract: A hybrid silicon carbide (SiC) device includes a first device structure having a first substrate comprising SiC of a first conductivity type and a first SiC layer of the first conductivity type, where the first SiC layer is formed on a face of the first substrate. The first device structure also includes a second SiC layer of a second conductivity type that is formed on a face of the first SiC layer and a first contact region of the first conductivity type, where the first contact region traverses the second SiC layer and contacts the first SiC. The device also includes a second device structure that is bonded to the first device structure. The second device structure includes a switching device formed on a second substrate and a second contact region that traverses a first terminal region of the switching device and contacts the first contact region.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: April 25, 2023
    Assignee: Analog Devices, Inc.
    Inventors: James G. Fiorenza, Puneet Srivastava, Daniel Piedra
  • Publication number: 20230122090
    Abstract: Electric field management techniques in GaN based semiconductors that utilize patterned regions of differing conductivity under the active GaN device, such as a GaN high electron mobility transistor (HEMT), are described. As an example, a patterned layer of oxidized silicon can be formed superjacent a layer of silicon dioxide during or prior to the heteroepitaxy of GaN or another semiconductor material. These techniques can be useful for back-side electric field management because a silicon layer, for example, can be made conductive to act as a back-side field plate.
    Type: Application
    Filed: October 18, 2021
    Publication date: April 20, 2023
    Inventors: James G. Fiorenza, Daniel Piedra
  • Publication number: 20230058073
    Abstract: A semiconductor device includes a layer of a first semiconducting material, where the first semiconducting material is epitaxially grown to have a crystal structure of a first substrate. The semiconductor device further includes a layer of a second semiconducting material disposed adjacent to the layer of the first semiconducting material to form a heterojunction with the layer of the first semiconducting material. The semiconductor device further includes a first component that is electrically coupled to the heterojunction, and a second substrate that is bonded to the layer of the first semiconducting material.
    Type: Application
    Filed: October 19, 2022
    Publication date: February 23, 2023
    Inventors: Puneet Srivastava, James G. Fiorenza
  • Patent number: 11569182
    Abstract: Gallium nitride-based monolithic microwave integrated circuits (MMICs) can comprise aluminum-based metals. Electrical contacts for gates, sources, and drains of transistors can include aluminum-containing metallic materials. Additionally, connectors, inductors, and interconnect devices can also comprise aluminum-based metals. The gallium-based MMICs can be manufactured in complementary metal oxide semiconductor (CMOS) facilities with equipment that produces silicon-based semiconductor devices.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: January 31, 2023
    Assignee: Analog Devices, Inc.
    Inventors: Daniel Piedra, James G. Fiorenza, Puneet Srivastava, Andrew Proudman, Kenneth Flanders, Denis Michael Murphy, Leslie P. Green, Peter R. Stubler
  • Patent number: 11538709
    Abstract: A transfer printing method is described that can be used for a wide variety of materials, such as to allow for circuits formed of different materials to be integrated together on a single integrated circuit. A tether (18) is formed on dice regions (16) of a first wafer (30), followed by attachment of a second wafer (32) to the tethers. The dice regions (16) are processed so as to be separated, followed by transfer printing of the dice regions to a third wafer (34).
    Type: Grant
    Filed: February 17, 2018
    Date of Patent: December 27, 2022
    Assignee: Analog Devices International Unlimited Company
    Inventors: James G. Fiorenza, Susan L. Feindt, Michael D. Delaus, Matthew Duffy, Ryan Iutzi, Kenneth Flanders, Rama Krishna Kotlanka
  • Patent number: 11508821
    Abstract: A semiconductor device includes a layer of a first semiconducting material, where the first semiconducting material is epitaxially grown to have a crystal structure of a first substrate. The semiconductor device further includes a layer of a second semiconducting material disposed adjacent to the layer of the first semiconducting material to form a heterojunction with the layer of the first semiconducting material. The semiconductor device further includes a first component that is electrically coupled to the heterojunction, and a second substrate that is bonded to the layer of the first semiconducting material.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: November 22, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Puneet Srivastava, James G. Fiorenza
  • Publication number: 20220310578
    Abstract: A hybrid silicon carbide (SiC) device includes a first device structure having a first substrate comprising SiC of a first conductivity type and a first SiC layer of the first conductivity type, where the first SiC layer is formed on a face of the first substrate. The first device structure also includes a second SiC layer of a second conductivity type that is formed on a face of the first SiC layer and a first contact region of the first conductivity type, where the first contact region traverses the second SiC layer and contacts the first SiC. The device also includes a second device structure that is bonded to the first device structure. The second device structure includes a switching device formed on a second substrate and a second contact region that traverses a first terminal region of the switching device and contacts the first contact region.
    Type: Application
    Filed: June 10, 2022
    Publication date: September 29, 2022
    Inventors: James G. Fiorenza, Puneet Srivastava, Daniel Piedra
  • Patent number: 11393806
    Abstract: A hybrid silicon carbide (SiC) device includes a first device structure having a first substrate comprising SiC of a first conductivity type and a first SiC layer of the first conductivity type, where the first SiC layer is formed on a face of the first substrate. The first device structure also includes a second SiC layer of a second conductivity type that is formed on a face of the first SiC layer and a first contact region of the first conductivity type, where the first contact region traverses the second SiC layer and contacts the first SiC. The device also includes a second device structure that is bonded to the first device structure. The second device structure includes a switching device formed on a second substrate and a second contact region that traverses a first terminal region of the switching device and contacts the first contact region.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: July 19, 2022
    Assignee: Analog Devices, Inc.
    Inventors: James G. Fiorenza, Puneet Srivastava, Daniel Piedra
  • Patent number: 11355598
    Abstract: A semiconductor device having a back-side field plate includes a buffer layer that includes a first compound semiconductor material, where the buffer layer is epitaxial to a crystalline substrate. The semiconductor device also includes field plate layer that is disposed on a surface of the buffer layer. The semiconductor device further includes a first channel layer disposed over the field plate layer, where the first channel layer includes the first compound semiconductor material. The semiconductor device further includes a region comprising a two-dimensional electron gas, where the two-dimensional electron gas is formed at an interface between the first channel layer and a second channel layer. The semiconductor device additionally includes a back-side field plate that is formed by a region of the field plate layer and is electrically isolated from other regions of the field plate layer.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: June 7, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Puneet Srivastava, James G. Fiorenza, Daniel Piedra
  • Publication number: 20220093779
    Abstract: An enhancement mode compound semiconductor field-effect transistor (FET) includes a source, a drain, and a gate located therebetween. The transistor further includes a first gallium nitride-based hetero-interface located under the gate and a buried region, located under the first hetero-interface, the buried p-type region configured to determine an enhancement mode FET turn-on threshold voltage to permit current flow between the source and the drain.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 24, 2022
    Inventors: James G. Fiorenza, Puneet Srivastava, Daniel Piedra
  • Publication number: 20210134641
    Abstract: A transfer printing method is described that can be used for a wide variety of materials, such as to allow for circuits formed of different materials to be integrated together on a single integrated circuit. A tether (18) is formed on dice regions (16) of a first wafer (30), followed by attachment of a second wafer (32) to the tethers. The dice regions (16) are processed so as to be separated, followed by transfer printing of the dice regions to a third wafer (34).
    Type: Application
    Filed: February 17, 2018
    Publication date: May 6, 2021
    Inventors: James G. Fiorenza, Susan L. Feindt, Michael D. Delaus, Matthew Duffy, Ryan lutzi, Kenneth Flanders, Rama Krishna Kotlanka
  • Publication number: 20210126120
    Abstract: Integrated circuits can include semiconductor devices with back-side field plates. The semiconductor devices can be formed on substrates that have conductive layers located within the substrates. The conductive layers can include at least one of a conducting material or a semi-conducting material that modifies an electric field produced by the semiconductor devices. The semiconductor devices can include one or more semiconductor layers that include one or more materials having a compound material that includes at least one Group 13 element and at least one Group 15 element.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 29, 2021
    Inventors: Daniel Piedra, James G. Fiorenza, Puneet Srivastava