Patents by Inventor James H. Brauker

James H. Brauker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11883164
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: January 30, 2024
    Assignee: Dexcom, Inc.
    Inventors: Apurv U Kamath, Jack Pryor, Paul V. Goode, Jr., James H Brauker, Aarthi Mahalingam
  • Publication number: 20230301558
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous and subcutaneous measurement of glucose in a host.
    Type: Application
    Filed: February 28, 2023
    Publication date: September 28, 2023
    Inventors: Mark Shults, Rathbun Rhodes, Stuart Updike, James H. Brauker
  • Publication number: 20230293056
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Application
    Filed: March 24, 2023
    Publication date: September 21, 2023
    Inventors: James H. Brauker, Victoria Carr-Brendel, Paul Goode, Apurv U. Kamath, James Patrick Thrower, Ben Xavier
  • Publication number: 20230284945
    Abstract: A system is provided for monitoring glucose in a host, including a continuous glucose sensor that produces a data stream indicative of a host's glucose concentration and an integrated receiver that receives the data stream from the continuous glucose sensor and calibrates the data stream using a single point glucose monitor that is integral with the integrated receiver. The integrated receiver obtains a glucose value from the single point glucose monitor, calibrates the sensor data stream received from the continuous glucose sensor, and displays one or both of the single point glucose measurement values and the calibrated continuous glucose sensor values on the user interface.
    Type: Application
    Filed: January 6, 2023
    Publication date: September 14, 2023
    Inventors: Andrew Rasdal, James H. Brauker, Paul V. Neale, Peter C. Simpson
  • Patent number: 11744943
    Abstract: Systems and methods for integrating a continuous glucose sensor 12, including a receiver 14, a medicament delivery device 16, a controller module, and optionally a single point glucose monitor 18 are provided. Integration may be manual, semi-automated and/or fully automated.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: September 5, 2023
    Assignee: DexCom, Inc.
    Inventors: John Michael Dobbles, Apurv Ullas Kamath, Aarthi Mahalingam, James H. Brauker
  • Publication number: 20230200691
    Abstract: The present disclosure relates generally to systems and methods for measuring an analyte in a host. More particularly, the present disclosure relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 29, 2023
    Inventors: Mark BRISTER, Paul V. NEALE, James H. BRAUKER, James Patrick THROWER, Paul V. GOODE, JR.
  • Publication number: 20230165534
    Abstract: Systems and methods for detecting noise episodes and processing analyte sensor data responsive thereto. In some embodiments, processing analyte sensor data includes filtering the sensor data to reduce or eliminate the effects of the noise episode on the signal.
    Type: Application
    Filed: September 2, 2022
    Publication date: June 1, 2023
    Inventors: Apurv U. Kamath, Aarthi Mahalingam, Ying Li, Mohammad Shariati, James H. Brauker, Mark C. Brister, Robert Boock
  • Publication number: 20230136127
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 4, 2023
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul Goode, Apurv U. Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin, Victor Ha, Steve Masterson, Melissa A. Nicholas, John E. Nolting, James R. Petisce, Sean T. Saint, Vance E. Swanson, Kum Ming Woo
  • Patent number: 11638541
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: May 2, 2023
    Assignee: Dexconi, Inc.
    Inventors: James H. Brauker, Victoria E. Carr-Brendel, Paul V. Goode, Jr., Apurv Ullas Kamath, James Patrick Thrower, Ben Xavier
  • Patent number: 11596332
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous and subcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: March 7, 2023
    Assignee: Dexcom, Inc.
    Inventors: Mark C. Shults, Rathbun K. Rhodes, Stuart J. Updike, James H. Brauker
  • Patent number: 11589823
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: February 28, 2023
    Assignee: Dexcom, Inc.
    Inventors: Paul V. Goode, James H. Brauker, Arpurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Patent number: 11564602
    Abstract: A system is provided for monitoring glucose in a host, including a continuous glucose sensor that produces a data stream indicative of a host's glucose concentration and an integrated receiver that receives the data stream from the continuous glucose sensor and calibrates the data stream using a single point glucose monitor that is integral with the integrated receiver. The integrated receiver obtains a glucose value from the single point glucose monitor, calibrates the sensor data stream received from the continuous glucose sensor, and displays one or both of the single point glucose measurement values and the calibrated continuous glucose sensor values on the user interface.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: January 31, 2023
    Assignee: Dexcom, Inc.
    Inventors: Andrew P. Rasdal, James H. Brauker, Paul V. Neale, Peter C. Simpson
  • Publication number: 20220296134
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transeutaneous measurement of glucose in a host.
    Type: Application
    Filed: March 31, 2022
    Publication date: September 22, 2022
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul Goode, Apurv U. Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin, Victor Ha, Steve Masterson, Melissa A. Nicholas, John E. Nolting, James R. Petisce, Sean T. Saint, Vance E. Swanson, Kum Ming Woo
  • Patent number: 11432772
    Abstract: Systems and methods for detecting noise episodes and processing analyte sensor data responsive thereto. In some embodiments, processing analyte sensor data includes filtering the sensor data to reduce or eliminate the effects of the noise episode on the signal.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: September 6, 2022
    Assignee: Dexcom, Inc.
    Inventors: Apurv Ullas Kamath, Aarthi Mahalingam, Ying Li, Mohammad Ali Shariati, James H. Brauker, Mark C. Brister, Robert Boock
  • Publication number: 20220240820
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: March 31, 2022
    Publication date: August 4, 2022
    Inventors: Peter C. Simpson et al., James H. Brauker, Mark C. Brister, Paul Goode, Apurv U. Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin, Victor Ha, Steve Masterson, Melissa A. Nicholas, John E. Nolting, James R. Petisce, Sean T. Saint, Vance E. Swanson, Kum Ming Woo
  • Publication number: 20220203038
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: March 16, 2022
    Publication date: June 30, 2022
    Applicant: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Publication number: 20220125357
    Abstract: Disclosed herein are systems and methods for calibrating a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes one or more electrodes to measure an additional analyte. Such measurements may provide a baseline or sensitivity measurement for use in calibrating the sensor. Furthermore, baseline and/or sensitivity measurements may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Application
    Filed: January 7, 2022
    Publication date: April 28, 2022
    Inventors: Apurv Ullas Kamath, Peter C. Simpson, James H. Brauker, Paul V. Goode, JR.
  • Publication number: 20220125355
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: January 12, 2022
    Publication date: April 28, 2022
    Inventors: Apurv U. Kamath, Jack Pryor, Paul V. Goode, JR., James H. Brauker, Aarthi Mahalingam
  • Publication number: 20220111148
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Applicant: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Publication number: 20220054055
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: November 4, 2021
    Publication date: February 24, 2022
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul V. Goode, JR., Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin, Victor Ha, Steve Masterson, Melissa A. Nicholas, John Nolting, James R. Petisce, Sean Saint, Vance Swanson, Kum Ming Woo