Patents by Inventor James H. Grassi

James H. Grassi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10545516
    Abstract: Automated measurement of fluid solution capacitance in industrial processes to determine solution concentration. Industrial process control transmitters determine solution concentration directly from solution capacitance and confirm concentration determinations based on solution conductivity. The industrial process control transmitters include terminals embodied in wire coils and/or metallic plates, at least one processor, and at least one computer readable memory device.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: January 28, 2020
    Assignee: Schneider Electric Systems USA, Inc.
    Inventor: James H. Grassi
  • Publication number: 20190041880
    Abstract: Automated measurement of fluid solution capacitance in industrial processes to determine solution concentration. Industrial process control transmitters determine solution concentration directly from solution capacitance and confirm concentration determinations based on solution conductivity. The industrial process control transmitters include terminals embodied in wire coils and/or metallic plates, at least one processor, and at least one computer readable memory device.
    Type: Application
    Filed: August 2, 2017
    Publication date: February 7, 2019
    Applicant: Schneider Electric Systems USA, Inc.
    Inventor: James H. Grassi
  • Patent number: 8080083
    Abstract: An oxidized mercury converter utilizes a combination of heat, reduced pressure, and dilution when converting oxidized mercury in a gas sample into elemental mercury. The converter applies heat to a gas sample to thermally convert oxidized mercury within a gas sample into elemental mercury and an oxidizing component, and thereafter reduces the pressure of the gas sample to minimize combination of the elemental mercury with other oxidizing compounds present in the gas sample and/or with byproducts of the thermal conversion (e.g., the oxidizing components). The converter thus allows an accurate analysis of the total amount of mercury, both oxidized and elemental forms, present within a gas sample without the need to use consumable reagents in the mercury conversion process.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: December 20, 2011
    Assignee: Thermo Fisher Scientific Inc.
    Inventors: Dieter Kita, James H. Grassi, Jeffrey Socha, Dirk Appel
  • Publication number: 20110213746
    Abstract: A method for analyzing a mixture includes identifying a plurality of possible components of the mixture, calculating at least one feature for at least a portion of the plurality of possible components, and calculating a probability value for at least a portion of the plurality of possible components based on the at least one feature and at least one transfer function
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Inventors: Edita Botonjic-Sehic, James H. Grassi, Hacene Boudries, Ivan E. Freeman, JR., Young Kyo Lee, Sridhar Venkataraman Dasaratha, Thirukazhukundram Subrahmaniam Vignesh, Saratchandra Shanmukh, Malathi Yarra
  • Publication number: 20100111788
    Abstract: An oxidized mercury converter utilizes a combination of heat, reduced pressure, and dilution when converting oxidized mercury in a gas sample into elemental mercury. The converter applies heat to a gas sample to thermally convert oxidized mercury within a gas sample into elemental mercury and an oxidizing component, and thereafter reduces the pressure of the gas sample to minimize combination of the elemental mercury with other oxidizing compounds present in the gas sample and/or with byproducts of the thermal conversion (e.g., the oxidizing components). The converter thus allows an accurate analysis of the total amount of mercury, both oxidized and elemental forms, present within a gas sample without the need to use consumable reagents in the mercury conversion process.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 6, 2010
    Inventors: Dieter Kita, James H. Grassi, Jeffrey Socha, Dirk Appel
  • Patent number: 7454945
    Abstract: A calibration assembly generates elemental mercury and oxidized mercury for calibrating components of a mercury monitoring system, including making necessary adjustments to efficiencies of a mercury compound converter and an elemental mercury detector. The calibrator generates an elemental mercury sample having a known elemental mercury concentration, [Hg0]1 and combines an oxidizing component with the elemental mercury sample, thereby producing a reduced concentration of elemental mercury [Hg0]2 within the sample. The calibrator measures the concentration of elemental mercury [Hg0]2 within the sample and calculates a difference between the known elemental mercury concentration, [Hg0]1 and the reduced concentration [Hg0]2. The difference between [Hg0]1 and [Hg0]2 is substantially equal to the concentration of oxidized mercury produced by the calibrator.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: November 25, 2008
    Assignee: Thermo Electron, Inc.
    Inventors: Dieter Kita, James H. Grassi, Jeffrey Socha, Bryan A. Marcotte
  • Patent number: 7454952
    Abstract: Disclosed are a system and method for monitoring total mercury within a gas sample in a substantially continuous manner and for calibrating for both elemental and oxidized mercury. A converter of the Continuous Emission Monitoring System (CEMS) receives a gas sample containing vaporized mercury from a probe. The converter converts oxidized mercury present within the gas sample into an elemental mercury component and an oxidizing component using thermal cracking. The converter also reduces the pressure of the gas sample to minimize recombination of the elemental mercury component with the oxidizing components. A mercury analyzer of the system receives the reduced pressure gas sample from the converter and detects the fluorescence of the elemental mercury within the sample.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: November 25, 2008
    Assignee: Thermo Fisher Scientific Inc.
    Inventors: Dieter Kita, James H. Grassi, Jeffrey Socha, Dirk Appel
  • Patent number: 7354553
    Abstract: An improved elemental mercury analyzer utilizes a fluorescence assembly in combination with a fluorescence quenching reduction mechanism to detect the concentration of elemental mercury within an emission gas sample, via fluorescence of the mercury within the gas sample, while minimizing fluorescence quenching of the gas sample. In one arrangement, the analyzer contains the emission gas sample under a vacuum or negative pressure while detecting fluorescence of the elemental mercury within the emission gas sample. By performing fluorescence detection of the emission gas sample at reduced pressure relative to the pressure of the as-sampled emission gas, the analyzer reduces the number of particle collisions within the emission gas sample over a certain period of time. Such collisional deactivation, and/or the addition of oxygen depleted gas such as nitrogen to the gas sample, reduces fluorescence quenching of the emission gas sample, improving accuracy of detection of mercury.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: April 8, 2008
    Inventors: Dirk Appel, James H. Grassi, Dieter Kita, Jeffrey Socha