Patents by Inventor James H. Pike

James H. Pike has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10445855
    Abstract: Lung segmentation and bone suppression techniques are helpful pre-processing steps prior to radiographic analyzes of the human thorax, as may occur during cancer screenings and other medical examinations. Autonomous lung segmentation may remove spurious boundary pixels from a radiographic image, as well as identify and refine lung boundaries. Thereafter, autonomous bone suppression may identify clavicle, posterior rib, and anterior rib bones using various image processing techniques, including warping and edge detection. The identified clavicle, posterior rib, and anterior rib bones may then be suppressed from the radiographic image to yield a segmented, bone suppressed radiographic image.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: October 15, 2019
    Assignees: iCAD, Inc., Konica Minolta, Inc.
    Inventors: David S. Harding, Sridharan Kamalakanan, Satoshi Kasai, Shinsuke Katsuhara, James H. Pike, Muhammad F. Sabir, Jeffrey C. Wehnes
  • Patent number: 10376230
    Abstract: Breast density measurements are used to perform Breast Imaging Reporting and Data System (BI-RADS) classification during breast cancer screenings. The accuracy of breast density measurements can be improved by quantitatively processing digital mammographic images. For example, breast segmentation may be performed on a mammographic image to isolate the breast tissue from the background and pectoralis tissue, while a breast thickness adjustment may be performed to compensate for decreased tissue thickness near the skin line of the breast. In some instances, BI-RADS density categorization may consider the degree to which dense tissue is dispersed throughout the breast. A breast density dispersion parameter can also be obtained using quantitative techniques, thereby providing objective BI-RADS classifications that are less susceptible to human error.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: August 13, 2019
    Assignee: iCad, Inc.
    Inventors: Jeffrey C. Wehnes, Arunkumar Gururajan, James Monaco, Ronald Larcom, James H. Pike
  • Publication number: 20170032535
    Abstract: Lung segmentation and bone suppression techniques are helpful pre-processing steps prior to radiographic analyses of the human thorax, as may occur during cancer screenings and other medical examinations. Autonomous lung segmentation may remove spurious boundary pixels from a radiographic image, as well as identify and refine lung boundaries. Thereafter, autonomous bone suppression may identify clavicle, posterior rib, and anterior rib bones using various image processing techniques, including warping and edge detection. The identified clavicle, posterior rib, and anterior rib bones may then be suppressed from the radiographic image to yield a segmented, bone suppressed radiographic image.
    Type: Application
    Filed: April 1, 2015
    Publication date: February 2, 2017
    Applicants: iCAD, Inc., Konica Minolta, Inc.
    Inventors: David S. Harding, Sridharan Kamalakanan, Satoshi Kasai, Shinsuke Katsuhara, James H. Pike, Muhammad F. Sabir, Jeffrey C. Wehnes
  • Publication number: 20160256126
    Abstract: Breast density measurements are used to perform Breast Imaging Reporting and Data System (BI-RADS) classification during breast cancer screenings. The accuracy of breast density measurements can be improved by quantitatively processing digital mammographic images. For example, breast segmentation may be performed on a mammographic image to isolate the breast tissue from the background and pectoralis tissue, while a breast thickness adjustment may be performed to compensate for decreased tissue thickness near the skin line of the breast. In some instances, BI-RADS density categorization may consider the degree to which dense tissue is dispersed throughout the breast. A breast density dispersion parameter can also be obtained using quantitative techniques, thereby providing objective BI-RADS classifications that are less susceptible to human error.
    Type: Application
    Filed: November 10, 2014
    Publication date: September 8, 2016
    Inventors: Jeffery C. Wehnes, Arunkumar Gururajan, James Monaco, Ronald Larcom, James H. Pike
  • Patent number: 9262822
    Abstract: An image analysis embodiment comprises subsampling a digital image by a subsample factor related to a first anomaly size scale, thereby generating a subsampled image, smoothing the subsampled image to generate a smoothed image, determining a minimum negative second derivative for each pixel in the smoothed image, determining each pixel having a convex down curvature based on a negative minimum negative second derivative value for the respective pixel, joining each eight-neighbor connected pixels having convex down curvature to identify each initial anomaly area, selecting the initial anomaly areas having strongest convex down curvatures based on a respective maximum negative second derivative for each of the initial anomaly areas, extracting one or more classification features for each selected anomaly area, and classifying the selected anomaly areas based on the extracted one or more classification features.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: February 16, 2016
    Assignee: VUCOMP, INC.
    Inventors: Jeffrey C. Wehnes, James H. Pike
  • Patent number: 9256941
    Abstract: An analysis of a digitized image is provided. The digitized image is repeatedly convolved to form first convolved images, which first convolved images are convolved a second time to form second convolved images. Each first convolved image and the respective second convolved image representing a stage, and each stage represents a different scale or size of anomaly. As an example, the first convolution may utilize a Gaussian convolver, and the second convolution may utilize a Laplacian convolver, but other convolvers may be used. The second convolved image from a current stage and the first convolved image from a previous stage are used with a neighborhood median determined from the second convolved image from the current stage by a peak detector to detect peaks, or possible anomalies for that particular scale.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: February 9, 2016
    Assignee: VUCOMP, INC.
    Inventors: Jeffrey C. Wehnes, James P. Monaco, David S. Harding, James H. Pike, Anbinh T. Ho, Lawrence M. Hanafy
  • Publication number: 20150023580
    Abstract: An analysis of a digitized image is provided. The digitized image is repeatedly convolved to form first convolved images, which first convolved images are convolved a second time to form second convolved images. Each first convolved image and the respective second convolved image representing a stage, and each stage represents a different scale or size of anomaly. As an example, the first convolution may utilize a Gaussian convolver, and the second convolution may utilize a Laplacian convolver, but other convolvers may be used. The second convolved image from a current stage and the first convolved image from a previous stage are used with a neighborhood median determined from the second convolved image from the current stage by a peak detector to detect peaks, or possible anomalies for that particular scale.
    Type: Application
    Filed: October 6, 2014
    Publication date: January 22, 2015
    Inventors: Jeffrey C. Wehnes, James P. Monaco, David S. Harding, James H. Pike, Anbinh T. Ho, Lawrence M. Hanafy
  • Patent number: 8855388
    Abstract: An analysis of a digitized image is provided. The digitized image is repeatedly convolved to form first convolved images, which first convolved images are convolved a second time to form second convolved images. Each first convolved image and the respective second convolved image representing a stage, and each stage represents a different scale or size of anomaly. As an example, the first convolution may utilize a Gaussian convolver, and the second convolution may utilize a Laplacian convolver, but other convolvers may be used. The second convolved image from a current stage and the first convolved image from a previous stage are used with a neighborhood median determined from the second convolved image from the current stage by a peak detector to detect peaks, or possible anomalies for that particular scale.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: October 7, 2014
    Assignee: vuCOMP, Inc.
    Inventors: Jeffrey C. Wehnes, James P. Monaco, David S. Harding, James H. Pike, Anbinh T. Ho, Lawrence M. Hanafy
  • Patent number: 8675933
    Abstract: An image segmentation embodiment comprises generating a start model comprising a set of model points approximating an outline of an object in an initial image, smoothing the image at a first smoothing level, generating a curvature image by applying a second derivative operator, locating second derivative local maxima in the curvature image that are orthogonal to a respective model point and within a search region having a first boundary on one side of the start model and a second boundary on an opposite side of the start model, generating a set of contours, shifting the start model to an outer boundary of the contours, and generating a segmentation mask of the object based on the shifted start model.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: March 18, 2014
    Assignee: VuCOMP, Inc.
    Inventors: Jeffrey C. Wehnes, James H. Pike, James P. Monaco
  • Patent number: 8675934
    Abstract: An image segmentation embodiment comprises applying a second derivative operator to the pixels of an image, growing a set of contours using seeding grid points as potential contour starting points, determining a contour strength vector for each of the contour pixels, generating a partial ellipse representing an estimated location of an object in the image, dividing the partial ellipse into a plurality of support sectors with control points, determining a contour strength and position for each contour, adjusting a position of each sector control point based on the contour positions weighted by the contour strengths of the contours centered in the respective sector, fitting the partial ellipse to the adjusted positions of the control points, and generating a segmentation mask of the object based on the partial fitted ellipse.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: March 18, 2014
    Assignee: VuCOMP, Inc.
    Inventors: Jeffrey C. Wehnes, James H. Pike, James P. Monaco
  • Publication number: 20130202165
    Abstract: An image analysis embodiment comprises subsampling a digital image by a subsample factor related to a first anomaly size scale, thereby generating a subsampled image, smoothing the subsampled image to generate a smoothed image, determining a minimum negative second derivative for each pixel in the smoothed image, determining each pixel having a convex down curvature based on a negative minimum negative second derivative value for the respective pixel, joining each eight-neighbor connected pixels having convex down curvature to identify each initial anomaly area, selecting the initial anomaly areas having strongest convex down curvatures based on a respective maximum negative second derivative for each of the initial anomaly areas, extracting one or more classification features for each selected anomaly area, and classifying the selected anomaly areas based on the extracted one or more classification features.
    Type: Application
    Filed: April 29, 2011
    Publication date: August 8, 2013
    Applicant: VuCOMP ,Inc.
    Inventors: Jeffrey C. Wehnes, James H. Pike
  • Publication number: 20130051676
    Abstract: An analysis of a digitized image is provided. The digitized image is repeatedly convolved to form first convolved images, which first convolved images are convolved a second time to form second convolved images. Each first convolved image and the respective second convolved image representing a stage, and each stage represents a different scale or size of anomaly. As an example, the first convolution may utilize a Gaussian convolver, and the second convolution may utilize a Laplacian convolver, but other convolvers may be used. The second convolved image from a current stage and the first convolved image from a previous stage are used with a neighborhood median determined from the second convolved image from the current stage by a peak detector to detect peaks, or possible anomalies for that particular scale.
    Type: Application
    Filed: April 29, 2011
    Publication date: February 28, 2013
    Applicant: VUCOMP, INC.
    Inventors: Jeffrey C. Wehnes, James P. Monaco, David S. Harding, James H. Pike, Anbinh T. Ho, Lawrence M. Hanafy
  • Publication number: 20110280465
    Abstract: An image segmentation embodiment comprises generating a start model comprising a set of model points approximating an outline of an object in an initial image, smoothing the image at a first smoothing level, generating a curvature image by applying a second derivative operator, locating second derivative local maxima in the curvature image that are orthogonal to a respective model point and within a search region having a first boundary on one side of the start model and a second boundary on an opposite side of the start model, generating a set of contours, shifting the start model to an outer boundary of the contours, and generating a segmentation mask of the object based on the shifted start model.
    Type: Application
    Filed: June 24, 2011
    Publication date: November 17, 2011
    Applicant: VuCOMP, Inc.
    Inventors: Jeffrey C. Wehnes, James H. Pike, James P. Monaco
  • Publication number: 20110274327
    Abstract: An image segmentation embodiment comprises applying a second derivative operator to the pixels of an image, growing a set of contours using seeding grid points as potential contour starting points, determining a contour strength vector for each of the contour pixels, generating a partial ellipse representing an estimated location of an object in the image, dividing the partial ellipse into a plurality of support sectors with control points, determining a contour strength and position for each contour, adjusting a position of each sector control point based on the contour positions weighted by the contour strengths of the contours centered in the respective sector, fitting the partial ellipse to the adjusted positions of the control points, and generating a segmentation mask of the object based on the partial fitted ellipse.
    Type: Application
    Filed: June 24, 2011
    Publication date: November 10, 2011
    Applicant: VuCOMP, Inc.
    Inventors: Jeffrey C. Wehnes, James H. Pike, James P. Monaco