Patents by Inventor James Higbie

James Higbie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11428633
    Abstract: The present disclosure relates to systems and methods for cellular imaging and identification through the use of a light sheet flow cytometer. In one implementation, a light sheet flow cytometer may include a light source configured to emit light having one or more wavelengths, at least one optical element configured to form a light sheet from the emitted light, a microfluidic channel configured to hold a sample, and an imaging device. The imaging device may be adapted to forming 3-D images of the sample such that identification tags attached to the sample are visible.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: August 30, 2022
    Assignee: Verily Life Sciences LLC
    Inventors: Cheng-Hsun Wu, Brian M. Rabkin, Supriyo Sinha, John D. Perreault, Chinmay Belthangady, James Higbie, Seung Ah Lee
  • Publication number: 20210146563
    Abstract: The disclosed technology includes a scissor assembly and method for using the scissor assembly. In some implementations, the scissor assembly includes first handle and a second handle connecting to each other via a flexible connector loop, two blades located on a first interior surface of the first handle and a first interior surface of the second handle, wherein the two blades are configured to slide adjacent to one another when the two handles are pushed towards each other. The scissor assembly may also include a lock to connect the two handles, the lock including a guide post located on the first handle configured to slideably move in a guide slot located in the second handle, a mouth located between the two blades when the scissor assembly is in an open position, the mouth to receive a first object of a predetermined size.
    Type: Application
    Filed: January 27, 2021
    Publication date: May 20, 2021
    Applicant: MaPLE Street Products, LLC
    Inventors: Regina Trainer Higbie, Matthew James Higbie, Robert Milton Miller
  • Patent number: 10946542
    Abstract: The disclosed technology includes a scissor assembly and method for using the scissor assembly. In some implementations, the scissor assembly includes first handle and a second handle connecting to each other via a flexible connector loop, two blades located on a first interior surface of the first handle and a first interior surface of the second handle, wherein the two blades are configured to slide adjacent to one another when the two handles are pushed towards each other. The scissor assembly may also include a lock to connect the two handles, the lock including a guide post located on the first handle configured to slidably move in a guide slot located in the second handle, a mouth located between the two blades when the scissor assembly is in an open position, the mouth to receive a first object of a predetermined size.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: March 16, 2021
    Assignee: MaPLE Street Products, LLC
    Inventors: Regina Trainer Higbie, Matthew James Higbie, Robert Milton Miller
  • Patent number: 10824847
    Abstract: Systems and methods for generating virtually stained images of unstained samples are provided. According to an aspect of the invention, a method includes accessing an image training dataset including a plurality of image pairs. Each image pair includes a first image of an unstained first tissue sample, and a second image acquired when the first tissue sample is stained. The method also includes accessing a set of parameters for an artificial neural network, wherein the set of parameters includes weights associated with artificial neurons within the artificial neural network; training the artificial neural network by using the image training dataset and the set of parameters to adjust the weights; accessing a third image of a second tissue sample that is unstained; using the trained artificial neural network to generate a virtually stained image of the second tissue sample from the third image; and outputting the virtually stained image.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: November 3, 2020
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Cheng-Hsun Wu, Huang-Wei Chang, James Higbie, Andrew Homyk, Charles Santori
  • Publication number: 20200182793
    Abstract: The present disclosure relates to systems and methods for cellular imaging and identification through the use of a light sheet flow cytometer. In one implementation, a light sheet flow cytometer may include a light source configured to emit light having one or more wavelengths, at least one optical element configured to form a light sheet from the emitted light, a microfluidic channel configured to hold a sample, and an imaging device. The imaging device may be adapted to forming 3-D images of the sample such that identification tags attached to the sample are visible.
    Type: Application
    Filed: February 12, 2020
    Publication date: June 11, 2020
    Inventors: Cheng-Hsun Wu, Brian M. Rabkin, Supriyo Sinha, John D. Perreault, Chinmay Belthangady, James Higbie, Seung Ah Lee
  • Patent number: 10605733
    Abstract: The present disclosure relates to systems and methods for cellular imaging and identification through the use of a light sheet flow cytometer. In one implementation, a light sheet flow cytometer may include a light source configured to emit light having one or more wavelengths, at least one optical element configured to form a light sheet from the emitted light, a microfluidic channel configured to hold a sample, and an imaging device. The imaging device may be adapted to forming 3-D images of the sample such that identification tags attached to the sample are visible.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: March 31, 2020
    Assignee: Verily Life Sciences LLC
    Inventors: Cheng-Hsun Wu, Brian M. Rabkin, Supriyo Sinha, John D. Perreault, Chinmay Belthangady, James Higbie, Seung Ah Lee
  • Patent number: 10591417
    Abstract: Systems and methods for hyperspectral imaging are described. In one implementation, a hyperspectral imaging system includes a sample holder configured to hold a sample, an illumination system, and a detection system. The illumination system includes a light source configured to emit excitation light having one or more wavelengths and a diffractive element. The illumination system is configured to structure the excitation light into a predetermined two-dimensional pattern at a conjugate plane of a focal plane in the sample, spectrally disperse the structured excitation light in a first lateral direction, and illuminate the sample in an excitation pattern with the one or more wavelengths dispersed in the first lateral direction.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: March 17, 2020
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Charles Santori, Supriyo Sinha, Cheng-Hsun Wu, James Higbie, Seung Ah Lee
  • Publication number: 20190310199
    Abstract: Systems and methods for hyperspectral imaging are described. In one implementation, a hyperspectral imaging system includes a sample holder configured to hold a sample, an illumination system, and a detection system. The illumination system includes a light source configured to emit excitation light having one or more wavelengths and a diffractive element. The illumination system is configured to structure the excitation light into a predetermined two-dimensional pattern at a conjugate plane of a focal plane in the sample, spectrally disperse the structured excitation light in a first lateral direction, and illuminate the sample in an excitation pattern with the one or more wavelengths dispersed in the first lateral direction.
    Type: Application
    Filed: June 21, 2019
    Publication date: October 10, 2019
    Applicant: Verily Life Sciences LLC
    Inventors: Charles Santori, Supriyo Sinha, Cheng-Hsun Wu, James Higbie, Seung Ah Lee
  • Patent number: 10365218
    Abstract: Systems and methods for hyperspectral imaging are described. In one implementation, a hyperspectral imaging system includes a sample holder configured to hold a sample, an illumination system, and a detection system. The illumination system includes a light source configured to emit excitation light having one or more wavelengths, and a first set of optical elements that include a first spatial light modulator (SLM), at least one lens, and at least one dispersive element. The illumination system is configured to structure the excitation light into a predetermined two-dimensional pattern at a conjugate plane of a focal plane in the sample, spectrally disperse the structured excitation light in a first lateral direction, and illuminate the sample in an excitation pattern with the one or more wavelengths dispersed in the first lateral direction.
    Type: Grant
    Filed: May 27, 2017
    Date of Patent: July 30, 2019
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Charles Santori, Supriyo Sinha, Cheng-Hsun Wu, James Higbie, Seung Ah Lee
  • Publication number: 20190188446
    Abstract: Systems and methods for generating virtually stained images of unstained samples are provided. According to an aspect of the invention, a method includes accessing an image training dataset including a plurality of image pairs. Each image pair includes a first image of an unstained first tissue sample, and a second image acquired when the first tissue sample is stained. The method also includes accessing a set of parameters for an artificial neural network, wherein the set of parameters includes weights associated with artificial neurons within the artificial neural network; training the artificial neural network by using the image training dataset and the set of parameters to adjust the weights; accessing a third image of a second tissue sample that is unstained; using the trained artificial neural network to generate a virtually stained image of the second tissue sample from the third image; and outputting the virtually stained image.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 20, 2019
    Applicant: Verily Life Sciences LLC
    Inventors: Cheng-Hsun Wu, Huang-Wei Chang, James Higbie, Andrew Homyk, Charles Santori
  • Publication number: 20190054643
    Abstract: The disclosed technology includes a scissor assembly and method for using the scissor assembly. In some implementations, the scissor assembly includes first handle and a second handle connecting to each other via a flexible connector loop, two blades located on a first interior surface of the first handle and a first interior surface of the second handle, wherein the two blades are configured to slide adjacent to one another when the two handles are pushed towards each other. The scissor assembly may also include a lock to connect the two handles, the lock including a guide post located on the first handle configured to slidably move in a guide slot located in the second handle, a mouth located between the two blades when the scissor assembly is in an open position, the mouth to receive a first object of a predetermined size.
    Type: Application
    Filed: August 16, 2018
    Publication date: February 21, 2019
    Inventors: Regina Trainer Higbie, Matthew James Higbie, Robert Milton Miller
  • Publication number: 20170343477
    Abstract: Systems and methods for hyperspectral imaging are described. In one implementation, a hyperspectral imaging system includes a sample holder configured to hold a sample, an illumination system, and a detection system. The illumination system includes a light source configured to emit excitation light having one or more wavelengths, and a first set of optical elements that include a first spatial light modulator (SLM), at least one lens, and at least one dispersive element. The illumination system is configured to structure the excitation light into a predetermined two-dimensional pattern at a conjugate plane of a focal plane in the sample, spectrally disperse the structured excitation light in a first lateral direction, and illuminate the sample in an excitation pattern with the one or more wavelengths dispersed in the first lateral direction.
    Type: Application
    Filed: May 27, 2017
    Publication date: November 30, 2017
    Inventors: Charles Santori, Supriyo Sinha, Cheng-Hsun Wu, James Higbie, Seung Ah Lee
  • Publication number: 20160296145
    Abstract: Wearable devices configured to detect the presence, concentration, number, or other properties of magnetic nanoparticles disposed in subsurface vasculature of a person are provided. The wearable devices are configured to detect, using one or more magnetometers, magnetic fields produced by the magnetic nanoparticles. In some embodiments, the magnetometer(s) are atomic magnetometers. In some embodiments, the wearable devices include magnets or other means to magnetize the magnetic nanoparticles. In some embodiments, the wearable devices produce a time-varying magnetic field, and the magnetometer(s) are configured to detect a time-varying magnetic field responsively produced by the magnetic nanoparticles. In some embodiments, the magnetic nanoparticles are configured to bind to an analyte of interest and detected properties of the magnetic nanoparticles can be used to determine the presence, concentration, or other properties of the analyte.
    Type: Application
    Filed: April 1, 2016
    Publication date: October 13, 2016
    Inventors: Vikram Singh Bajaj, Vasiliki Demas, Victor Marcel Acosta, James Higbie, John David Perreault
  • Patent number: 8587304
    Abstract: An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: November 19, 2013
    Assignee: The Regents of The University of California
    Inventors: Dmitry Budker, James Higbie, Eric P. Corsini
  • Patent number: 8421455
    Abstract: A magnetometer and concomitant magnetometry method comprising emitting light from a light source, via a pulse generator pulsing light from the light source, directing the pulsed light to an atomic chamber, employing a field sensor in the atomic chamber, and via a signal processing module receiving a signal from the field sensor.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: April 16, 2013
    Assignees: Southwest Sciences Incorporated, Regents of the University of California
    Inventors: David Christian Hovde, Dmitry Budker, James Higbie, Victor Acosta, Micah P. Ledbetter
  • Publication number: 20110025323
    Abstract: An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.
    Type: Application
    Filed: September 4, 2008
    Publication date: February 3, 2011
    Inventors: Dmitry Budker, James Higbie, Eric P. Corsini