Patents by Inventor James J. Demarest

James J. Demarest has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180218979
    Abstract: Embodiments are directed to a method and resulting structures for forming a semiconductor device having a vertically integrated nanosheet fuse. A nanosheet stack is formed on a substrate. The nanosheet stack includes a semiconductor layer formed between an upper nanosheet and a lower nanosheet. The semiconductor layer is modified such that an etch rate of the modified semiconductor layer is greater than an etch rate of the upper and lower nanosheets when exposed to an etchant. Portions of the modified semiconductor layer are removed to form a cavity between the upper and lower nanosheets and a silicide region is formed in the upper nanosheet.
    Type: Application
    Filed: March 16, 2018
    Publication date: August 2, 2018
    Inventors: Robin H. Chao, James J. Demarest, Nicolas J. Loubet
  • Publication number: 20180218978
    Abstract: Embodiments are directed to a method and resulting structures for forming a semiconductor device having a vertically integrated nanosheet fuse. A nanosheet stack is formed on a substrate. The nanosheet stack includes a semiconductor layer formed between an upper nanosheet and a lower nanosheet. The semiconductor layer is modified such that an etch rate of the modified semiconductor layer is greater than an etch rate of the upper and lower nanosheets when exposed to an etchant. Portions of the modified semiconductor layer are removed to form a cavity between the upper and lower nanosheets and a silicide region is formed in the upper nanosheet.
    Type: Application
    Filed: November 13, 2017
    Publication date: August 2, 2018
    Inventors: Robin H. Chao, James J. Demarest, Nicolas J. Loubet
  • Patent number: 9997454
    Abstract: A method of forming an electrical device that includes forming a first level including an array of metal lines, wherein an air gap is positioned between the adjacent metal lines. A second level is formed including at least one dielectric layer atop the first level. A plurality of trench structures is formed in the at least on dielectric layer. At least one of the plurality of trench structures opens the air gap. A conductive material is formed within the trenches. The conductive material deposited in the open air gap provides a vertical fuse.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: June 12, 2018
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, James J. Demarest, Christopher J. Penny, Christopher J. Waskiewicz
  • Patent number: 9985097
    Abstract: A semiconductor device and process of making the same generally includes simultaneously forming nanosheet capacitors with nanosheet FET devices on the same substrate. The nanosheets in the capacitor have a width and are coupled to one another by sacrificial layers, wherein the sacrificial layers have a width smaller than the nanosheet width, and wherein the nanosheets and the sacrificial layers are conductively coupled to the substrate. The nanosheets in the FET devices are spaced apart and free of sacrificial layers. The nanosheets in the FET device have a width less than half the width of the nanosheets in the capacitor region.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: May 29, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, James J. Demarest, John G. Gaudiello, Juntao Li
  • Patent number: 9978678
    Abstract: Embodiments are directed to a method and resulting structures for forming a semiconductor device having a vertically integrated nanosheet fuse. A nanosheet stack is formed on a substrate. The nanosheet stack includes a semiconductor layer formed between an upper nanosheet and a lower nanosheet. The semiconductor layer is modified such that an etch rate of the modified semiconductor layer is greater than an etch rate of the upper and lower nanosheets when exposed to an etchant. Portions of the modified semiconductor layer are removed to form a cavity between the upper and lower nanosheets and a silicide region is formed in the upper nanosheet.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: May 22, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robin H. Chao, James J. Demarest, Nicolas J. Loubet
  • Patent number: 9966305
    Abstract: A method for forming an ion flow barrier between conductors includes forming a barrier material through a via in an interlevel dielectric layer and onto a first metal layer and recessing the barrier material to form a thickness of the barrier material on the first metal layer in the via, the thickness forming an ion flow barrier. A second metal layer is deposited in the via over the ion flow barrier such that, during operation, the ion flow barrier reduces ion flow between the first metal layer and the second metal layer while maintaining low resistance.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: May 8, 2018
    Assignee: International Business Machines Corporation
    Inventors: James J. Demarest, James J. Kelly, Koichi Motoyama, Christopher J. Penny, Oscar van der Straten
  • Publication number: 20180122892
    Abstract: A backend-of-the-line (BEOL) semiconductor capacitor made by method, apparatus, or computer program product, through an airgap metallization process, patterning a first electrode by removing a portion of inter-layer dielectric for a desired capacitor area, depositing a dielectric for a capacitor insulator, filling the desired capacitor area to form a second electrode, polishing and capping the second electrode, and interconnecting the first electrode and the second electrode.
    Type: Application
    Filed: December 28, 2017
    Publication date: May 3, 2018
    Inventors: Marc A. Bergendahl, James J. Demarest, Christopher J. Penny, Christopher Waskiewicz
  • Patent number: 9953915
    Abstract: An interconnect structure includes a first dielectric layer and a second dielectric layer each extending along a first axis to define a height and a second axis opposite the first axis to define a length. A capping layer is interposed between the first dielectric layer and the second dielectric layer. At least one electrically conductive feature is embedded in at least one of the first dielectric layer and the second dielectric layer. At least one electrically conductive via extends through the second dielectric layer and the capping layer. The via has an end that contacts the conductive feature. The end includes a flange having at least one portion extending laterally along the first axis to define a contact area between the via and the at least one conductive feature.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: April 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hsueh-Chung Chen, James J. Demarest, Sean Teehan, Chih-Chao Yang
  • Publication number: 20180061933
    Abstract: A backend-of-the-line (BEOL) semiconductor capacitor made by method, apparatus, or computer program product, through an airgap metallization process, patterning a first electrode by removing a portion of inter-layer dielectric for a desired capacitor area, depositing a dielectric for a capacitor insulator, filling the desired capacitor area to form a second electrode, polishing and capping the second electrode, and interconnecting the first electrode and the second electrode.
    Type: Application
    Filed: September 1, 2016
    Publication date: March 1, 2018
    Inventors: Marc A. Bergendahl, James J. Demarest, Christopher J. Penny, Christopher Waskiewicz
  • Publication number: 20180006113
    Abstract: A semiconductor device and process of making the same generally includes simultaneously forming nanosheet capacitors with nanosheet FET devices on the same substrate. The nanosheets in the capacitor have a width and are coupled to one another by sacrificial layers, wherein the sacrificial layers have a width smaller than the nanosheet width, and wherein the nanosheets and the sacrificial layers are conductively coupled to the substrate. The nanosheets in the FET devices are spaced apart and free of sacrificial layers. The nanosheets in the FET device have a width less than half the width of the nanosheets in the capacitor region.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Kangguo Cheng, James J. Demarest, John G. Gaudiello, Juntao Li
  • Patent number: 9793213
    Abstract: A method for forming an ion flow barrier between conductors includes forming a barrier material through a via in an interlevel dielectric layer and onto a first metal layer and recessing the barrier material to form a thickness of the barrier material on the first metal layer in the via, the thickness forming an ion flow barrier. A second metal layer is deposited in the via over the ion flow barrier such that, during operation, the ion flow barrier reduces ion flow between the first metal layer and the second metal layer while maintaining low resistance.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: October 17, 2017
    Assignee: International Business Machines Corporation
    Inventors: James J. Demarest, James J. Kelly, Koichi Motoyama, Christopher J. Penny, Oscar van der Straten
  • Patent number: 9780027
    Abstract: A technique relates to an airgap structure. A dielectric layer is formed on an underlying layer. Copper filled trenches are formed in the dielectric layer, and a metal liner lines the copper filled trenches. An oxide liner lines the metal liner and covers the dielectric layer. One or more airgaps are formed between the copper filled trenches in areas in which the oxide liner was not present on the dielectric layer. A cap layer is formed on top of the one or more airgaps, the copper filled trenches, and portions of the oxide liner.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: October 3, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marc A. Bergendahl, James J. Demarest, Christopher J. Penny, Christopher J. Waskiewicz
  • Publication number: 20170243822
    Abstract: A method of forming an electrical device that includes forming a first level including an array of metal lines, wherein an air gap is positioned between the adjacent metal lines. A second level is formed including at least one dielectric layer atop the first level. A plurality of trench structures is formed in the at least on dielectric layer. At least one of the plurality of trench structures opens the air gap. A conductive material is formed within the trenches. The conductive material deposited in the open air gap provides a vertical fuse.
    Type: Application
    Filed: April 5, 2017
    Publication date: August 24, 2017
    Inventors: Marc A. Bergendahl, James J. Demarest, Christopher J. Penny, Christopher J. Waskiewicz
  • Publication number: 20170243821
    Abstract: A method of forming an electrical device that includes forming a first level including an array of metal lines, wherein an air gap is positioned between the adjacent metal lines. A second level is formed including at least one dielectric layer atop the first level. A plurality of trench structures is formed in the at least on dielectric layer. At least one of the plurality of trench structures opens the air gap. A conductive material is formed within the trenches. The conductive material deposited in the open air gap provides a vertical fuse.
    Type: Application
    Filed: November 22, 2016
    Publication date: August 24, 2017
    Inventors: Marc A. Bergendahl, James J. Demarest, Christopher J. Penny, Christopher J. Waskiewicz
  • Publication number: 20170236784
    Abstract: A method for forming an ion flow barrier between conductors includes forming a barrier material through a via in an interlevel dielectric layer and onto a first metal layer and recessing the barrier material to form a thickness of the barrier material on the first metal layer in the via, the thickness forming an ion flow barrier. A second metal layer is deposited in the via over the ion flow barrier such that, during operation, the ion flow barrier reduces ion flow between the first metal layer and the second metal layer while maintaining low resistance.
    Type: Application
    Filed: February 16, 2016
    Publication date: August 17, 2017
    Inventors: James J. Demarest, James J. Kelly, Koichi Motoyama, Christopher J. Penny, Oscar van der Straten
  • Publication number: 20170236748
    Abstract: A method for forming an ion flow barrier between conductors includes forming a barrier material through a via in an interlevel dielectric layer and onto a first metal layer and recessing the barrier material to form a thickness of the barrier material on the first metal layer in the via, the thickness forming an ion flow barrier. A second metal layer is deposited in the via over the ion flow barrier such that, during operation, the ion flow barrier reduces ion flow between the first metal layer and the second metal layer while maintaining low resistance.
    Type: Application
    Filed: November 1, 2016
    Publication date: August 17, 2017
    Inventors: James J. Demarest, James J. Kelly, Koichi Motoyama, Christopher J. Penny, Oscar van der Straten
  • Patent number: 9666528
    Abstract: A method of forming an electrical device that includes forming a first level including an array of metal lines, wherein an air gap is positioned between the adjacent metal lines. A second level is formed including at least one dielectric layer atop the first level. A plurality of trench structures is formed in the at least on dielectric layer. At least one of the plurality of trench structures opens the air gap. A conductive material is formed within the trenches. The conductive material deposited in the open air gap provides a vertical fuse.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: May 30, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marc A. Bergendahl, James J. Demarest, Christopher J. Penny, Christopher J. Waskiewicz
  • Publication number: 20170141030
    Abstract: A technique relates to an airgap structure. A dielectric layer is formed on an underlying layer. Copper filled trenches are formed in the dielectric layer, and a metal liner lines the copper filled trenches. An oxide liner lines the metal liner and covers the dielectric layer. One or more airgaps are formed between the copper filled trenches in areas in which the oxide liner was not present on the dielectric layer. A cap layer is formed on top of the one or more airgaps, the copper filled trenches, and portions of the oxide liner.
    Type: Application
    Filed: May 20, 2016
    Publication date: May 18, 2017
    Inventors: Marc A. Bergendahl, James J. Demarest, Christopher J. Penny, Christopher J. Waskiewicz
  • Publication number: 20170084534
    Abstract: An interconnect structure includes a first dielectric layer and a second dielectric layer each extending along a first axis to define a height and a second axis opposite the first axis to define a length. A capping layer is interposed between the first dielectric layer and the second dielectric layer. At least one electrically conductive feature is embedded in at least one of the first dielectric layer and the second dielectric layer. At least one electrically conductive via extends through the second dielectric layer and the capping layer. The via has an end that contacts the conductive feature. The end includes a flange having at least one portion extending laterally along the first axis to define a contact area between the via and the at least one conductive feature.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Inventors: Hsueh-Chung Chen, James J. Demarest, Sean Teehan, Chih-Chao Yang
  • Patent number: 9553044
    Abstract: An interconnect structure includes a first dielectric layer and a second dielectric layer each extending along a first axis to define a height and a second axis opposite the first axis to define a length. A capping layer is interposed between the first dielectric layer and the second dielectric layer. At least one electrically conductive feature is embedded in at least one of the first dielectric layer and the second dielectric layer. At least one electrically conductive via extends through the second dielectric layer and the capping layer. The via has an end that contacts the conductive feature. The end includes a flange having at least one portion extending laterally along the first axis to define a contact area between the via and the at least one conductive feature.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: January 24, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hsueh-Chung Chen, James J. Demarest, Sean Teehan, Chih-Chao Yang