Patents by Inventor James J. Gallagher

James J. Gallagher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11912545
    Abstract: A wireless hoist system including a first hoist device having a first motor and a first wireless transceiver and a second hoist device having a second motor and a second wireless transceiver. The wireless hoist system includes a controller in wireless communication with the first wireless transceiver and the second wireless. The controller is configured to receive a user input and determine a first operation parameter and a second operation parameter based on the user input. The controller is also configured to provide, wirelessly, a first control signal indicative of the first operation parameter to the first hoist device and provide, wirelessly, a second control signal indicative of the second operation parameter to the second hoist device. The first hoist device operates based on the first control signal and the second hoist device operates based on the second control signal.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: February 27, 2024
    Assignee: Milwaukee Electric Tool Corporation
    Inventors: Matthew Post, Gareth Mueckl, Matthew N. Thurin, Joshua D. Widder, Timothy J. Bartlett, Patrick D. Gallagher, Jarrod P. Kotes, Karly M. Schober, Kenneth W. Wolf, Terry L. Timmons, Mallory L. Marksteiner, Jonathan L. Lambert, Ryan A. Spiering, Jeremy R. Ebner, Benjamin A. Smith, James Wekwert, Brandon L. Yahr, Troy C. Thorson, Connor P. Sprague, John E. Koller, Evan M. Glanzer, John S. Scott, William F. Chapman, III, Timothy R. Obermann
  • Publication number: 20230220215
    Abstract: The present description provides a Michael Addition curable composition, comprising A) at least one reactive donor capable of providing two or more nucleophilic carbanions; B) at least one reactive acceptor comprising two or more carbon-carbon double bonds; and C) at least one catalyst for catalyzing the Michael Addition crosslinking reaction between the at least one reactive donor and the at least one reactive acceptor. The present description further provides a coating composition containing the composition and a coated article made therefrom.
    Type: Application
    Filed: June 15, 2021
    Publication date: July 13, 2023
    Inventors: Song NIU, Shigang FAN, Xi ZHAO, James J. GALLAGHER
  • Patent number: 7733852
    Abstract: Telecommunications switching systems that require real-time computer control can be controlled using remotely located computers coupled to the switching systems via data links. By coupling several switching systems to one or more centrally located control computers, maintenance staffing can be reduced while increasing overall system reliability by providing back up control computers in multiple centralized locations. Centrally located control computers can be backed up with redundant computers at the central control site.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: June 8, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Richard J. Bruno, Nicholas D. De Trana, Craig L. DeCaluwe, Hossein Eslambolchi, James J. Gallagher, Paul Greendyk, Patricia Klink, Clayton M. Lockhart, Gary A. Martyn
  • Patent number: 7061906
    Abstract: Telecommunications switching systems that require real-time computer control can be controlled using remotely located computers coupled to the switching systems via data links. By coupling several switching systems to one or more centrally located control computers, maintenance staffing can be reduced while increasing overall system reliability by providing back up control computers in multiple centralized locations. Centrally located control computers can be backed up with redundant computers at the central control site.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: June 13, 2006
    Assignee: AT & T Corp.
    Inventors: Richard J. Bruno, Nicholas D. De Trana, Craig L. DeCaluwe, Hossein Eslambolchi, James J. Gallagher, Paul Greendyk, Patricia Klink, Lockhart M. Clayton, Gary A. Martyn
  • Patent number: 6633638
    Abstract: The invention allows a customer to self-provision the routing of non-geographic calls along a communication network. The customer is allowed to interface a computer with terminating switches and network control point databases so that routing information regarding the transmission of non-geographic calls across the communication network can be added, edited or reconfigured according to the customer's calling requirements. First, the customer accesses the communications network and requests a non-geographic number. Second, if the non-geographic number is available, the customer can input information regarding internal routing numbers or implement various calling schemes such as time of day calling. Third, the customer can access trunk information on terminating switches and modify the trunk names as requirements in the customer's communication network change.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: October 14, 2003
    Assignee: AT&T Corp.
    Inventors: Nicholas D. De Trana, Hossein Eslambolchi, James J. Gallagher, Diana L. Stipo, Ellen D. Walbridge
  • Publication number: 20020075855
    Abstract: Telecommunications switching systems that require real-time computer control can be controlled using remotely located computers coupled to the switching systems via data links. By coupling several switching systems to one or more centrally located control computers, maintenance staffing can be reduced while increasing overall system reliability by providing back up control computers in multiple centralized locations. Centrally located control computers can be backed up with redundant computers at the central control site.
    Type: Application
    Filed: January 29, 2002
    Publication date: June 20, 2002
    Applicant: AT&T Corp.
    Inventors: Richard J. Bruno, Nicholas D. De Trana, Craig L. DeCaluwe, Hossein Eslambolchi, James J. Gallagher, Paul Greendyk, Patricia Klink, Clayton M. Lockhart, Gary A. Martyn
  • Patent number: 5559877
    Abstract: A telecommunication network may be arranged in accord with the invention so that a change in provisioning data occurring at one element of the network is automatically supplied to the other elements of the network, thereby eliminating the need of having a network administration facility to communicate manually the change to the other network elements. For example, if a local central office switch is rehomed from a first toll switch to a second toll switch, then the first and second toll switches form messages respectively characterizing the rehome and then send the messages to each of the other network toll switches so that the other toll switches may update their respective routing and trunking data relating to the rehomed switch. The network is also arranged to implement a rule-based, end-to-end routing scheme which automatically selects a routing path from multiple candidates based on (a) class-of-service parameters and (b) availability of network capacity.
    Type: Grant
    Filed: March 21, 1995
    Date of Patent: September 24, 1996
    Assignee: AT&T
    Inventors: Gerald R. Ash, Kenneth K. Chan, Jiayu Chen, Alan E. Frey, James J. Gallagher, Andrew W. Peck
  • Patent number: 3984675
    Abstract: A tunable wideband coherent source comprising a laser source and a microwave source, means for combining and mixing the outputs of the laser and microwave sources so as to provide a combined output, and means for filtering the combined output so as to separate sum and difference components, with any undesired background being suppressed. Our source may be used with means for utilizing the sum signal, the difference signal, or both of these.
    Type: Grant
    Filed: February 12, 1971
    Date of Patent: October 5, 1976
    Assignee: Martin Marietta Corporation
    Inventors: Vincent J. Corcoran, Richard E. Cupp, James J. Gallagher, William T. Smith