Patents by Inventor James J. St. Martin

James J. St. Martin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230405332
    Abstract: A medical device is configured to set a post-atrial time interval in response to an atrial event and generate an event time signal in response to a ventricular electrical signal crossing an R-wave sensing threshold during the post-atrial time interval. The device accumulates oversensing evidence in response to the event time signal and adjusts a ventricular sensing control parameter based on the accumulated oversensing evidence in some examples.
    Type: Application
    Filed: August 31, 2023
    Publication date: December 21, 2023
    Inventors: Maureen E. LYBARGER, Jian CAO, Wade M. DEMMER, Michael W. HEINKS, Jean E. HUDSON, Michael KEMMERER, James J. ST. MARTIN, Todd J. SHELDON
  • Patent number: 11786739
    Abstract: A medical device is configured to set a post-atrial time interval in response to an atrial event and generate an event time signal in response to a ventricular electrical signal crossing an R-wave sensing threshold during the post-atrial time interval. The device accumulates oversensing evidence in response to the event time signal and adjusts a ventricular sensing control parameter based on the accumulated oversensing evidence in some examples.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: October 17, 2023
    Assignee: Medtronic Inc.
    Inventors: Maureen E. Lybarger, Jian Cao, Wade M. Demmer, Michael W. Heinks, Jean E. Hudson, Michael Kemmerer, James J. St. Martin, Todd J. Sheldon
  • Patent number: 11628306
    Abstract: Techniques for facilitating improved power management for an implantable device are provided. In one example, an implantable device includes a telemetry circuit and a power management circuit. The telemetry circuit is configured to facilitate a telemetry session between the implantable device and an external device. The power management circuit is configured to connect a power supply to the telemetry circuit via a first current-limiting device based on a determination that the telemetry circuit satisfies a defined criterion. The power management circuit is also configured to connect the telemetry circuit to a second current-limiting device based on a determination that the telemetry circuit is connected to the first current-limiting device for a defined period of time.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: April 18, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: James J. St. Martin, George C. Rosar, John D. Wahlstrand
  • Publication number: 20220088391
    Abstract: The disclosure describes capturing the cardiac tissue using current steering techniques with a multi-pole cardiac lead implanted near the cardiac tissue. The techniques may include current-controlled sources in an IMD to provide current regulation to the pacing pulses allowing direct stimulation through multiple electrode contacts with known current delivery to the tissue. This current steering technique may use a delivery current source coupled to a delivery electrode and a receiving current source coupled to a receiving electrode to steer the current to the desired tissue to be stimulated. In some examples, different electrode pairs may be paced sequentially or together. In other examples, two or more electrodes may be considered the “delivery electrodes” and two or more electrodes may be considered the “receiving electrodes.” In some examples a current-controlled source in the IMD may be implemented using a source degeneration circuit.
    Type: Application
    Filed: September 2, 2021
    Publication date: March 24, 2022
    Inventors: Randolph E. Crutchfield, James J. St. Martin
  • Publication number: 20210268291
    Abstract: Techniques for facilitating improved power management for an implantable device are provided. In one example, an implantable device includes a telemetry circuit and a power management circuit. The telemetry circuit is configured to facilitate a telemetry session between the implantable device and an external device. The power management circuit is configured to connect a power supply to the telemetry circuit via a first current-limiting device based on a determination that the telemetry circuit satisfies a defined criterion. The power management circuit is also configured to connect the telemetry circuit to a second current-limiting device based on a determination that the telemetry circuit is connected to the first current-limiting device for a defined period of time.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: James J. St. Martin, George C. Rosar, John D. Wahlstrand
  • Patent number: 11013929
    Abstract: Techniques for facilitating improved power management for an implantable device are provided. In one example, an implantable device includes a telemetry circuit and a power management circuit. The telemetry circuit is configured to facilitate a telemetry session between the implantable device and an external device. The power management circuit is configured to connect a power supply to the telemetry circuit via a first current-limiting device based on a determination that the telemetry circuit satisfies a defined criterion. The power management circuit is also configured to connect the telemetry circuit to a second current-limiting device based on a determination that the telemetry circuit is connected to the first current-limiting device for a defined period of time.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: May 25, 2021
    Assignee: Medtronic, Inc.
    Inventors: James J. St. Martin, George C. Rosar, John D. Wahlstrand
  • Publication number: 20210052895
    Abstract: A medical device is configured to set a post-atrial time interval in response to an atrial event and generate an event time signal in response to a ventricular electrical signal crossing an R-wave sensing threshold during the post-atrial time interval. The device accumulates oversensing evidence in response to the event time signal and adjusts a ventricular sensing control parameter based on the accumulated oversensing evidence in some examples.
    Type: Application
    Filed: August 18, 2020
    Publication date: February 25, 2021
    Inventors: Maureen E. LYBARGER, Jian CAO, Wade M. DEMMER, Michael W. HEINKS, Jean E. HUDSON, Michael KEMMERER, James J. ST. MARTIN, Todd J. SHELDON
  • Patent number: 10874862
    Abstract: Examples are described for configuring cardiac pacing circuitry of an implantable medical device. Circuitry that is configurable to control delivery of therapy or sense signals in accordance with a plurality of vectors may determine that one or more pins, for therapy delivery or sensing in accordance with a first subset of vectors of the plurality of vectors, are in an electrically floating state. Circuitry may selectively close one or more switches to couple at least a subset of the one or more pins to one or more set voltage levels, and deliver therapy in accordance with a vector of a second subset of vectors of the plurality of vectors, wherein the second subset of vectors is different than the first subset of vectors.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: December 29, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Anthony W. Schrock, Michael L. Hudziak, James J. St. Martin
  • Publication number: 20180250515
    Abstract: Examples are described for configuring cardiac pacing circuitry of an implantable medical device. Circuitry that is configurable to control delivery of therapy or sense signals in accordance with a plurality of vectors may determine that one or more pins, for therapy delivery or sensing in accordance with a first subset of vectors of the plurality of vectors, are in an electrically floating state. Circuitry may selectively close one or more switches to couple at least a subset of the one or more pins to one or more set voltage levels, and deliver therapy in accordance with a vector of a second subset of vectors of the plurality of vectors, wherein the second subset of vectors is different than the first subset of vectors.
    Type: Application
    Filed: February 21, 2018
    Publication date: September 6, 2018
    Inventors: Anthony W. SCHROCK, Michael L. HUDZIAK, James J. ST. MARTIN
  • Publication number: 20180243567
    Abstract: Techniques for facilitating improved power management for an implantable device are provided. In one example, an implantable device includes a telemetry circuit and a power management circuit. The telemetry circuit is configured to facilitate a telemetry session between the implantable device and an external device. The power management circuit is configured to connect a power supply to the telemetry circuit via a first current-limiting device based on a determination that the telemetry circuit satisfies a defined criterion. The power management circuit is also configured to connect the telemetry circuit to a second current-limiting device based on a determination that the telemetry circuit is connected to the first current-limiting device for a defined period of time.
    Type: Application
    Filed: March 30, 2017
    Publication date: August 30, 2018
    Inventors: James J. ST. MARTIN, George C. ROSAR, John D. WAHLSTRAND
  • Patent number: 9339657
    Abstract: Techniques are described for selectively enabling and disabling a pre-stimulation passive recharge pacing mode for an implantable medical device (IMD) depending on whether the IMD is operating in an electromagnetic interference (EMI)-safe mode. In some examples, the IMD may enable the pre-stimulation passive recharge pacing mode when the IMD is operating in the EMI-safe mode, and disable the pre-stimulation passive recharge pacing mode when the IMD is not operating in the EMI-safe mode. The EMI-safe mode may be, in some examples, a magnetic resonance imaging (MRI)-safe mode.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: May 17, 2016
    Assignee: Medtronic, Inc.
    Inventors: Christopher C. Stancer, James J. St. Martin, Tara L. Bratten, Michael Hudziak
  • Patent number: 8688223
    Abstract: Example techniques for communicating between two medical devices are described. One medical device may be an implantable medical device. Another medical device may be a lead-borne implantable medical device. The lead-borne implantable medical device may be referred to as a satellite. The implantable medical device may measure impedance of a path including at least two electrodes, at least one of which is on the lead, using an impedance measurement module. In some example implementations of this disclosure, the implantable medical device may also use the impedance measurement module to communicate with the satellite on the lead.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: April 1, 2014
    Inventors: John D. Wahlstrand, James J. St. Martin
  • Publication number: 20120283795
    Abstract: Techniques are described for selectively enabling and disabling a pre-stimulation passive recharge pacing mode for an implantable medical device (IMD) depending on whether the IMD is operating in an electromagnetic interference (EMI)-safe mode. In some examples, the IMD may enable the pre-stimulation passive recharge pacing mode when the IMD is operating in the EMI-safe mode, and disable the pre-stimulation passive recharge pacing mode when the IMD is not operating in the EMI-safe mode. The EMI-safe mode may be, in some examples, a magnetic resonance imaging (MRI)-safe mode.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Applicant: Medtronic, Inc.
    Inventors: Christopher C. Stancer, James J. St. Martin, Tara L. Bratten, Michael Hudziak
  • Publication number: 20120101545
    Abstract: Example techniques for communicating between two medical devices are described. One medical device may be an implantable medical device. Another medical device may be a lead-borne implantable medical device. The lead-borne implantable medical device may be referred to as a satellite. The implantable medical device may measure impedance of a path including at least two electrodes, at least one of which is on the lead, using an impedance measurement module. In some example implementations of this disclosure, the implantable medical device may also use the impedance measurement module to communicate with the satellite on the lead.
    Type: Application
    Filed: October 26, 2010
    Publication date: April 26, 2012
    Applicant: MEDTRONIC, INC.
    Inventors: John D. Wahlstrand, James J. St. Martin