Patents by Inventor James Jefferson Smith

James Jefferson Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11866747
    Abstract: Disclosed herein are recombinant meganucleases engineered to recognize and cleave a recognition sequence present in the human mitochondrial DNA (mtDNA). The disclosure further relates to the use of such recombinant meganucleases in methods for producing genetically-modified eukaryotic cells, and to a population of genetically-modified eukaryotic cells wherein the mtDNA has been having modified or edited.
    Type: Grant
    Filed: January 30, 2023
    Date of Patent: January 9, 2024
    Assignees: University of Miami, Precision BioSciences, Inc.
    Inventors: James Jefferson Smith, Ginger Tomberlin, John Morris, Wendy Shoop, Carlos T. Moraes
  • Publication number: 20240002823
    Abstract: The present disclosure encompasses engineered meganucleases that bind and cleave recognition sequences within a dystrophin gene. The present disclosure also encompasses methods of using such engineered meganucleases to make genetically modified cells. Further, the disclosure encompasses pharmaceutical compositions comprising engineered meganuclease proteins, or polynucleotides encoding engineered meganucleases of the disclosure, and the use of such compositions for the modification of a dystrophin gene in a subject, or for treatment of Duchenne Muscular Dystrophy.
    Type: Application
    Filed: July 27, 2023
    Publication date: January 4, 2024
    Applicant: Precision BioSciences, Inc.
    Inventors: Gary Owens, Janel Lape, James Jefferson Smith, John Morris, Caitlin Turner, Whitney Lewis, Derek Jantz
  • Publication number: 20240002796
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Application
    Filed: January 17, 2023
    Publication date: January 4, 2024
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Jeyaraj Antony, Victor Bartsevich
  • Publication number: 20240000845
    Abstract: The present invention encompasses engineered nucleases which recognize and cleave a recognition sequence within the first exon of the human T cell receptor (TCR) alpha constant region gene. The engineered meganucleases can exhibit at least one optimized characteristic, such as enhanced (i.e., increased) specificity or efficiency of cleavage, when compared to the first-generation meganuclease TRC 1-2x.87EE. The present invention also encompasses methods of using such engineered nucleases to make genetically-modified cells, and the use of such cells in a pharmaceutical composition and in methods for treating diseases, such as cancer.
    Type: Application
    Filed: September 5, 2023
    Publication date: January 4, 2024
    Applicant: Precision BioSciences, Inc.
    Inventors: James Jefferson Smith, Janel Lape, Hui Li, Jochen Genschel
  • Publication number: 20230416711
    Abstract: Disclosed are rationally-designed, non-naturally-occurring meganucleases in which a pair of enzyme subunits having specificity for different recognition sequence half-sites are joined into a single polypeptide to form a functional heterodimer with a non-palindromic recognition sequence. The invention also relates to methods of producing such meganucleases, and methods of producing recombinant nucleic acids and organisms using such meganucleases.
    Type: Application
    Filed: March 17, 2023
    Publication date: December 28, 2023
    Applicant: Precision Biosciences, Inc.
    Inventors: James Jefferson Smith, Derek Jantz
  • Publication number: 20230340434
    Abstract: The invention provides engineered meganucleases, derived from I-Cre1, which have substitutions at particular positions that increase the activity of the nucleases for recognition sequences containing certain center sequences. The invention also provides methods of cleaving double-stranded DNA using such engineered meganucleases. The invention further provides methods for improving the activity of engineered meganucleases for recognition sequences containing certain center sequences.
    Type: Application
    Filed: August 11, 2022
    Publication date: October 26, 2023
    Applicant: Precision BioSciences, Inc.
    Inventors: James Jefferson Smith, Hui Li
  • Patent number: 11786554
    Abstract: The present invention encompasses engineered nucleases which recognize and cleave a recognition sequence within the first exon of the human T cell receptor (TCR) alpha constant region gene. The engineered meganucleases can exhibit at least one optimized characteristic, such as enhanced (i.e., increased) specificity or efficiency of cleavage, when compared to the first-generation meganuclease TRC 1-2x.87EE. The present invention also encompasses methods of using such engineered nucleases to make genetically-modified cells, and the use of such cells in a pharmaceutical composition and in methods for treating diseases, such as cancer.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: October 17, 2023
    Assignee: Precision BioSciences, Inc.
    Inventors: James Jefferson Smith, Janel Lape, Hui Li, Jochen Genschel
  • Patent number: 11788077
    Abstract: The present invention encompasses engineered nucleases which recognize and cleave a recognition sequence within a Hepatitis B virus (HBV) genome. The engineered meganucleases can exhibit at least one optimized characteristic, such as enhanced specificity and/or efficiency of indel formation, when compared to the first-generation meganuclease HBV 11-12x.26. Further, the invention encompasses pharmaceutical compositions comprising engineered meganuclease proteins, nucleic acids encoding engineered meganucleases, and the use of such compositions for treating HBV infections or hepatocellular carcinoma.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: October 17, 2023
    Assignee: Precision BioSciences, Inc.
    Inventors: James Jefferson Smith, Janel Lape, Victor Bartsevich, Hui Li
  • Publication number: 20230295590
    Abstract: Disclosed herein are recombinant meganucleases engineered to recognize and cleave a recognition sequence present in the human mitochondrial DNA (mtDNA). The disclosure further relates to the use of such recombinant meganucleases in methods for producing genetically-modified eukaryotic cells, and to a population of genetically-modified eukaryotic cells wherein the mtDNA has been having modified or edited.
    Type: Application
    Filed: January 30, 2023
    Publication date: September 21, 2023
    Inventors: James Jefferson Smith, Ginger Tomberlin, John Morris, Wendy Shoop, Carlos T. Moraes
  • Patent number: 11753630
    Abstract: The present disclosure encompasses engineered meganucleases that bind and cleave recognition sequences within a dystrophin gene. The present disclosure also encompasses methods of using such engineered meganucleases to make genetically modified cells. Further, the disclosure encompasses pharmaceutical compositions comprising engineered meganuclease proteins, or polynucleotides encoding engineered meganucleases of the disclosure, and the use of such compositions for the modification of a dystrophin gene in a subject, or for treatment of Duchenne Muscular Dystrophy.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: September 12, 2023
    Assignee: Precision BioSciences, Inc.
    Inventors: Gary Owens, Janel Lape, James Jefferson Smith, John Morris, Caitlin Turner, Whitney Lewis, Derek Jantz
  • Publication number: 20230235342
    Abstract: Methods for producing in a plant a complex transgenic trait locus comprising at least two altered target sequences in a genomic region of interest are disclosed. The methods involve the use of two or more double-strand-break-inducing agents, each of which can cause a double-strand break in a target sequence in the genomic region of interest which results in an alteration in the target sequence. Also disclosed are complex transgenic trait loci in plants. A complex transgenic trait locus comprises at least two altered target sequences that are genetically linked to a polynucleotide of interest. Plants, plant cells, plant parts, and seeds comprising one or more complex transgenic trait loci are also disclosed.
    Type: Application
    Filed: August 23, 2022
    Publication date: July 27, 2023
    Applicants: PIONEER HI-BRED INTERNATIONAL, INC., E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: ANDREW MARK CIGAN, SAVERIO CARL FALCO, HUIRONG GAO, MICHAEL LASSNER, DEREK JANTZ, ZHONGSEN LI, ZHAN-BIN LIU, SERGEI SVITASHEV, JAMES JEFFERSON SMITH
  • Publication number: 20230201317
    Abstract: The present invention provides a method of treating a nucleotide repeat expansion disorder comprising delivering a pair of engineered nucleases, or genes encoding engineered nucleases, to the cells of a patient such that the two nucleases excise the nucleotide repeat responsible for the disease permanently from the genome. The invention provides a general method for treating nucleotide repeat expansion disorders and engineered nucleases suitable for practicing the method. The invention further provides vectors and techniques for delivering engineered nucleases to patient cells.
    Type: Application
    Filed: June 17, 2022
    Publication date: June 29, 2023
    Applicant: Precision BioSciences, Inc.
    Inventors: James Jefferson Smith, Victor Bartsevich, Derek Jantz
  • Publication number: 20230193230
    Abstract: Disclosed are recombinant meganucleases engineered to bind and cleave a recognition sequence present in a mutant RHO P23H allele. The invention further relates to the use of such recombinant meganucleases in a method for treating retinitis pigmentosa, wherein the mutant RHO P23H allele is preferentially targeted, cleaved, and inactivated.
    Type: Application
    Filed: May 11, 2021
    Publication date: June 22, 2023
    Applicant: Precision BioSciences, Inc.
    Inventors: Victor Bartsevich, Derek Jantz, James Jefferson Smith, Michael G. Nicholson
  • Publication number: 20230193318
    Abstract: Disclosed herein are viral vectors for use in recombinant molecular biology techniques. In particular, the present disclosure relates to self-limiting viral vectors comprising genes encoding site-specific endonucleases as well as recognition sequences for site-specific endonucleases such that expression of the endonuclease in a cell cleaves the viral vector and limits its persistence time. In some embodiments, the viral vectors disclosed herein also carry directives to delete, insert, or change a target sequence.
    Type: Application
    Filed: November 22, 2022
    Publication date: June 22, 2023
    Applicant: Precision BioSciencens, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson
  • Patent number: 11680254
    Abstract: The present invention encompasses engineered meganucleases which recognize and cleave a recognition sequence within the human PCSK9 gene. The present invention also encompasses methods for using such engineered meganucleases in a pharmaceutical composition and in methods for treating or reducing the symptoms of cholesterol-related disorders, such as hypercholesterolemia. Further, the invention encompasses pharmaceutical compositions comprising engineered meganuclease proteins, nucleic acids encoding engineered meganucleases, and the use of such compositions for treating cholesterol-related disorders, such as hypercholesterolemia.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: June 20, 2023
    Assignee: PRECISION BIOSCIENCES, INC.
    Inventors: Victor Bartsevich, Derek Jantz, James Jefferson Smith, Janel Lape
  • Publication number: 20230183664
    Abstract: Disclosed herein are viral vectors for use in recombinant molecular biology techniques. In particular, the present disclosure relates to self-limiting viral vectors containing nucleic acid sequences that encode engineered nucleases as well as nuclease recognition sequences such that expression of the engineered nuclease in a cell cleaves the viral vector and limits its persistence time. In some embodiments, the viral vectors disclosed herein also carry directives to delete, insert, or change a target sequence.
    Type: Application
    Filed: May 10, 2021
    Publication date: June 15, 2023
    Applicant: Precision BioSciences, Inc.
    Inventors: Hui Li, James Jefferson Smith, Derek Jantz
  • Publication number: 20230172985
    Abstract: The present invention encompasses compositions and methods for the sequential stacking of donor nucleic acids into a single genomic locus within a cell to allow for the introduction of relatively long nucleic sequences. This allows for insertion into the genome of a donor nucleic acid sequence that exceeds the packaging capacity of a single adeno-associated viral vector.
    Type: Application
    Filed: September 16, 2022
    Publication date: June 8, 2023
    Applicant: PRECISION BIOSCIENCES, INC.
    Inventors: JOANN HUX, JAMES JEFFERSON SMITH
  • Publication number: 20230174621
    Abstract: The present disclosure provides modified EGFR peptides useful in genetically-modified cells to allow for selection and enrichment of those cells expressing the modified EGFR peptide. For example, isolation of genetically-modified cells expressing a modified EGFR peptide can allow for selection of cells that co-express a chimeric antigen receptor or exogenous T cell receptor. In those instances wherein the genetically-modified cells present adverse effects when administered to a subject, the modified EGFR finds farther use as a suicide gene upon administration of an anti-EGFR antibody, leading to depletion of the ,genetically-modified cells. Also disclosed herein are plasmids and viral vectors comprising a nucleic acid sequence encoding the modified EGFR peptides, and methods of administering compositions comprising the modified EGER peptides to subjects in order to reduce the symptoms, progression, or occurrence of disease, such as cancer.
    Type: Application
    Filed: September 19, 2022
    Publication date: June 8, 2023
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Daniel T. MacLeod
  • Publication number: 20230088311
    Abstract: Methods of cleaving double-stranded DNA that can be recognized and cleaved by a rationally-designed, I-CreI-derived meganuclease are provided. Also provided are recombinant nucleic acids, cells, and organisms containing such recombinant nucleic acids, as well as cells and organisms produced using such meganucleases. Also provided are methods of conducting a custom-designed, I-CreI-derived meganuclease business.
    Type: Application
    Filed: July 13, 2022
    Publication date: March 23, 2023
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith
  • Publication number: 20230053176
    Abstract: The present disclosure encompasses engineered meganucleases that bind and cleave recognition sequences within a dystrophin gene. The present disclosure also encompasses methods of using such engineered meganucleases to make genetically modified cells. Further, the disclosure encompasses pharmaceutical compositions comprising engineered meganuclease proteins, or polynucleotides encoding engineered meganucleases of the disclosure, and the use of such compositions for the modification of a dystrophin gene in a subject, or for treatment of Duchenne Muscular Dystrophy.
    Type: Application
    Filed: September 13, 2022
    Publication date: February 16, 2023
    Applicant: Precision BioSciences, Inc.
    Inventors: Gary Owens, Janel Lape, James Jefferson Smith, John Morris, Caitlin Turner, Whitney Lewis, Derek Jantz