Patents by Inventor James Jeng

James Jeng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250091673
    Abstract: In one embodiment, a computer-implemented method includes collecting data from at least one component of a micromobility vehicle. The method includes analyzing the data to determine whether a condition of the micromobility vehicle corresponds to an unsafe condition. The method includes determining, based on analysis, that the condition of the micromobility vehicle corresponds to the unsafe condition. The method includes activating an immobilization lock on the micromobility vehicle to immobilize a wheel of the micromobility vehicle responsive to determining that the condition of the micromobility vehicle corresponds to the unsafe condition.
    Type: Application
    Filed: December 2, 2024
    Publication date: March 20, 2025
    Inventors: Erik Keith Askin, Jeffrey Alan Boyd, Alex Dixon, Garrett Korda Drayna, Merric-Andrew Jaranowski French, Daniel Lami Goldstein, Rochus Emanuel Jacob, Jared Mitchell Kole, Chen-Yu Lin, Oliver Maximilian Mueller, James Jeng-Yeu Peng, Andrew Michael Reimer, Neil Richard Anthony Saldanha, Gary Shambat, Jennifer Uang
  • Patent number: 12157530
    Abstract: Techniques are disclosed for systems and methods associated with locking a micromobility transit vehicle to a stationary object. A multimodal transportation system may include a docking station including a securement point, and a micromobility transit vehicle securable to the securement point of the docking station. The micromobility transit vehicle may include a storage basket and a lock cable including a first end coupled to the storage basket and a second end. The second end of the lock cable may be securable to the securement point of the docking station to lock the micromobility transit vehicle to the docking station. The storage basket may include a pin lock. The pin lock may engage a locking pin of the lock cable to lock the micromobility transit vehicle via the lock cable.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: December 3, 2024
    Assignee: Lyft, Inc.
    Inventors: Erik Keith Askin, Jeffrey Alan Boyd, Alex Dixon, Garrett Korda Drayna, Merric-Andrew Jaranowski French, Daniel Lami Goldstein, Rochus Emanuel Jacob, Jared Mitchell Kole, Chen-Yu Lin, Oliver Maximilian Mueller, James Jeng-Yeu Peng, Andrew Michael Reimer, Neil Richard Anthony Saldanha, Gary Shambat, Jennifer Uang
  • Patent number: 12066760
    Abstract: A reticle-masking structure is provided. The reticle-masking structure includes a magnetic substrate and a paramagnetic part disposed on the magnetic substrate. The paramagnetic part includes a plurality of fractions disposed on a plurality of protrusion structures. In some embodiments, the fractions are irregularly arranged. A method for forming a reticle-masking structure and an extreme ultraviolet apparatus are also provided.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: August 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ching-Hsiang Hsu, James Jeng-Jyi Hwang, Feng Yuan Hsu
  • Patent number: 11999027
    Abstract: A method for polishing a semiconductor substrate includes the following operations. A semiconductor substrate is received. An abrasive slurry having a first temperature is dispensed to a polishing surface of a polishing pad. The semiconductor substrate is polished. The abrasive slurry have a second temperature is dispensed to the polishing surface of the polishing pad during the polishing of the semiconductor substrate. The second temperature is different from the first temperature.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: June 4, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: James Jeng-Jyi Hwang, He Hui Peng, Jiann Lih Wu, Chi-Ming Yang
  • Patent number: 11772227
    Abstract: An apparatus for CMP includes a wafer carrier retaining a semiconductor wafer during a polishing operation, a slurry dispenser dispensing an abrasive slurry, and a slurry temperature control device coupled to the shiny dispenser and configured to control a temperature of the abrasive slurry. The slurry temperature control device includes a heat transferring portion surrounding a portion of the slurry dispenser, and a thermos-electric (TE) chip coupled to the heat transferring portion and configured to control the temperature of the abrasive slurry.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: October 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: James Jeng-Jyi Hwang, He Hui Peng, Jiann Lih Wu, Chi-Ming Yang
  • Publication number: 20230211452
    Abstract: A wafer polishing head is provided. The wafer polishing head includes a carrier head, a plurality of piezoelectric actuators disposed on the carrier head, and a membrane disposed over the plurality of piezoelectric actuators. The plurality of piezoelectric actuators is configured to provide mechanical forces on the membrane and generate an electrical charge when receiving counterforces of the mechanical forces through the membrane. A wafer polishing system and a method for polishing a substrate using the same are also provided.
    Type: Application
    Filed: March 13, 2023
    Publication date: July 6, 2023
    Inventors: JAMES JENG-JYI HWANG, HE HUI PENG, JIANN LIH WU, CHI-MING YANG
  • Publication number: 20230203848
    Abstract: The disclosed computer-implemented method may include a magnetic insertable lock component with a magnet-sensing lock housing. By using a magnet within a pin and a magnetic field sensor within the lock housing, the apparatus may accurately detect the state of the lock. In some embodiments, the apparatus may determine the pin is inserted fully into the lock, the pin is inserted partially into the lock, the pin is not inserted in the lock, and/or that a foreign object that is not the pin is inserted into the lock. By using a magnet within the pin to track the state of the lock, the apparatus may improve both the user experience and the security of the lock. Various other methods, systems, and computer-readable media are also disclosed.
    Type: Application
    Filed: March 6, 2023
    Publication date: June 29, 2023
    Inventors: Peter Rex Luedtke, Andrew Paul Rosenkranz, Richard Stephen Chelminski, James Jeng-Yeu Peng
  • Patent number: 11624211
    Abstract: The disclosed computer-implemented method may include a magnetic insertable lock component with a magnet-sensing lock housing. By using a magnet within a pin and a magnetic field sensor within the lock housing, the apparatus may accurately detect the state of the lock. In some embodiments, the apparatus may determine the pin is inserted fully into the lock, the pin is inserted partially into the lock, the pin is not inserted in the lock, and/or that a foreign object that is not the pin is inserted into the lock. By using a magnet within the pin to track the state of the lock, the apparatus may improve both the user experience and the security of the lock. Various other methods, systems, and computer-readable media are also disclosed.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: April 11, 2023
    Assignee: Lyft, Inc.
    Inventors: Peter Rex Luedtke, Andrew Paul Rosenkranz, Richard Stephen Chelminski, James Jeng-Yeu Peng
  • Patent number: 11602821
    Abstract: A wafer polishing head is provided. The wafer polishing head includes a carrier head, a plurality of piezoelectric actuators disposed on the carrier head, and a membrane disposed over the plurality of piezoelectric actuators. The plurality of piezoelectric actuators is configured to provide mechanical forces on the membrane and generate an electrical charge when receiving counterforces of the mechanical forces through the membrane. A wafer polishing system and a method for polishing a substrate using the same are also provided.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: March 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: James Jeng-Jyi Hwang, He Hui Peng, Jiann Lih Wu, Chi-Ming Yang
  • Publication number: 20220384198
    Abstract: A method for polishing a semiconductor substrate includes the following operations. A semiconductor substrate is received. An abrasive slurry having a first temperature is dispensed to a polishing surface of a polishing pad. The semiconductor substrate is polished. The abrasive slurry have a second temperature is dispensed to the polishing surface of the polishing pad during the polishing of the semiconductor substrate. The second temperature is different from the first temperature.
    Type: Application
    Filed: August 8, 2022
    Publication date: December 1, 2022
    Inventors: JAMES JENG-JYI HWANG, HE HUI PENG, JIANN LIH WU, CHI-MING YANG
  • Publication number: 20220214620
    Abstract: A reticle-masking structure is provided. The reticle-masking structure includes a magnetic substrate and a paramagnetic part disposed on the magnetic substrate. The paramagnetic part includes a plurality of fractions disposed on a plurality of protrusion structures. In some embodiments, the fractions are irregularly arranged. A method for forming a reticle-masking structure and an extreme ultraviolet apparatus are also provided.
    Type: Application
    Filed: March 25, 2022
    Publication date: July 7, 2022
    Inventors: CHING-HSIANG HSU, JAMES JENG-JYI HWANG, FENG YUAN HSU
  • Publication number: 20220194503
    Abstract: Techniques are disclosed for systems and methods associated with locking a micromobility transit vehicle to a stationary object. A multimodal transportation system may include a docking station including a securement point, and a micromobility transit vehicle securable to the securement point of the docking station. The micromobility transit vehicle may include a storage basket and a lock cable including a first end coupled to the storage basket and a second end. The second end of the lock cable may be securable to the securement point of the docking station to lock the micromobility transit vehicle to the docking station. The storage basket may include a pin lock. The pin lock may engage a locking pin of the lock cable to lock the micromobility transit vehicle via the lock cable.
    Type: Application
    Filed: December 30, 2021
    Publication date: June 23, 2022
    Inventors: Erik Keith Askin, Jeffrey Alan Boyd, Alex Dixon, Garrett Korda Drayna, Merric-Andrew Jaranowski French, Daniel Lami Goldstein, Rochus Emanuel Jacob, Jared Mitchell Kole, Chen-Yu Lin, Oliver Maximilian Mueller, James Jeng-Yeu Peng, Andrew Michael Reimer, Neil Richard Anthony Saldanha, Gary Shambat, Jennifer Uang
  • Patent number: 11287745
    Abstract: A reticle-masking structure is provided. The reticle-masking structure includes a magnetic substrate and a paramagnetic part disposed on the magnetic substrate. The paramagnetic part includes a plurality of fractions disposed on a plurality of protrusion structures. In some embodiments, the protrusion structures are irregularly arranged. A method for forming a reticle-masking structure and an extreme ultraviolet apparatus are also provided.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: March 29, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ching-Hsiang Hsu, James Jeng-Jyi Hwang, Feng Yuan Hsu
  • Patent number: 11214322
    Abstract: Techniques are disclosed for systems and methods associated with locking a micromobility transit vehicle to a stationary object. A multimodal transportation system may include a docking station including a securement point, and a micromobility transit vehicle securable to the securement point of the docking station. The micromobility transit vehicle may include a storage basket and a lock cable including a first end coupled to the storage basket and a second end. The second end of the lock cable may be securable to the securement point of the docking station to lock the micromobility transit vehicle to the docking station. The storage basket may include a pin lock. The pin lock may engage a locking pin of the lock cable to lock the micromobility transit vehicle via the lock cable.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: January 4, 2022
    Assignee: Lyft, Inc.
    Inventors: Erik Keith Askin, Jeffrey Alan Boyd, Alex Dixon, Garrett Korda Drayna, Merric-Andrew Jaranowski French, Daniel Lami Goldstein, Rochus Emanuel Jacob, Jared Mitchell Kole, Chen-Yu Lin, Oliver Maximilian Mueller, James Jeng-Yeu Peng, Andrew Michael Reimer, Neil Richard Anthony Saldanha, Gary Shambat, Jennifer Uang
  • Publication number: 20210354772
    Abstract: Techniques are disclosed for systems and methods associated with locking a micromobility transit vehicle to a stationary object. A multimodal transportation system may include a docking station including a securement point, and a micromobility transit vehicle securable to the securement point of the docking station. The micromobility transit vehicle may include a storage basket and a lock cable including a first end coupled to the storage basket and a second end. The second end of the lock cable may be securable to the securement point of the docking station to lock the micromobility transit vehicle to the docking station. The storage basket may include a pin lock. The pin lock may engage a locking pin of the lock cable to lock the micromobility transit vehicle via the lock cable.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 18, 2021
    Inventors: Erik Keith ASKIN, Jeffrey Alan Boyd, Alex Dixon, Garrett Korda Drayna, Merric-Andrew Jaranowski French, Daniel Lami Goldstein, Rochus Emanuel Jacob, Jared Mitchell Kole, Chen-Yu Lin, Oliver Maximilian Mueller, James Jeng-Yeu Peng, Andrew Michael Reimer, Neil Richard Anthony Saldanha, Gary Shambat, Jennifer Uang
  • Patent number: 11134027
    Abstract: A method for transmitting upstream data in a cable network is provided. The method includes a cable modem (CM) receiving a generic service identifier (G-SID) included in a corresponding information element (IE) in a data over cable service interface specification (DOCSIS) upstream bandwidth allocation MAP message. The G-SID is a unique identifier assigned to the CM. The method includes the CM transmitting the upstream data for one or more service flows of the CM via at least a portion of the CM bandwidth allocation.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: September 28, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yanbin Sun, Chenghu Shen, James Jeng Chen, Tao Ouyang
  • Publication number: 20210220965
    Abstract: A wafer polishing head is provided. The wafer polishing head includes a carrier head, a plurality of piezoelectric actuators disposed on the carrier head, and a membrane disposed over the plurality of piezoelectric actuators. The plurality of piezoelectric actuators is configured to provide mechanical forces on the membrane and generate an electrical charge when receiving counterforces of the mechanical forces through the membrane. A wafer polishing system and a method for polishing a substrate using the same are also provided.
    Type: Application
    Filed: January 17, 2020
    Publication date: July 22, 2021
    Inventors: JAMES JENG-JYI HWANG, HE HUI PENG, JIANN LIH WU, CHI-MING YANG
  • Publication number: 20210096469
    Abstract: A reticle-masking structure is provided. The reticle-masking structure includes a magnetic substrate and a paramagnetic part disposed on the magnetic substrate. The paramagnetic part includes a plurality of fractions disposed on a plurality of protrusion structures. In some embodiments, the protrusion structures are irregularly arranged. A method for forming a reticle-masking structure and an extreme ultraviolet apparatus are also provided.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: CHING-HSIANG HSU, JAMES JENG-JYI HWANG, FENG YUAN HSU
  • Publication number: 20210039223
    Abstract: An apparatus for CMP includes a wafer carrier retaining a semiconductor wafer during a polishing operation, a slurry dispenser dispensing an abrasive slurry, and a slurry temperature control device coupled to the shiny dispenser and configured to control a temperature of the abrasive slurry. The slurry temperature control device includes a heat transferring portion surrounding a portion of the slurry dispenser, and a thermos-electric (TE) chip coupled to the heat transferring portion and configured to control the temperature of the abrasive slurry.
    Type: Application
    Filed: April 1, 2020
    Publication date: February 11, 2021
    Inventors: JAMES JENG-JYI HWANG, HE HUI PENG, JIANN LIH WU, CHI-MING YANG
  • Patent number: 10875148
    Abstract: An apparatus for CMP includes a wafer carrier retaining a semiconductor wafer during a polishing operation, a slurry dispenser dispensing an abrasive slurry, and a temperature control system monitoring and controlling a temperature variation during the polishing operation. The temperature control system includes a temperature sensor detecting a temperature during the polishing operation and providing a signal corresponding to the temperature, a temperature controller coupled to the temperature sensor and receiving the signal from the temperature sensor, and a cooling device coupled to the temperature controller and providing a coolant to the apparatus for CMP.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: He Hui Peng, James Jeng-Jyi Hwang, Chi-Ming Yang, Yung-Yao Lee, Yen-Di Tsen