Patents by Inventor James K. Min

James K. Min has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230144338
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, and/or the like. In some embodiments, the systems, devices, and methods described herein are further configured to generate one or more assessments of plaque-based diseases from raw medical images using one or more of the identified features and/or quantified parameters.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 11, 2023
    Inventors: James K. MIN, James P. EARLS, Hugo Miguel RODRIGUES MARQUES
  • Publication number: 20230145596
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, perform computational fluid dynamics analysis, facilitate assessment of risk of heart disease and coronary artery disease, enhance drug development, determine a CAD risk factor goal, provide atherosclerosis and vascular morphology characterization, and determine indication of myocardial risk, and/or the like.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 11, 2023
    Inventors: James K. Min, James P. Earls, Hugo Miguel Rodrigues Marques, Shant Malkasian, Ben Hootnick
  • Publication number: 20230147336
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, and/or the like. In some embodiments, the systems, devices, and methods described herein are further configured to generate one or more assessments of plaque-based diseases from raw medical images using one or more of the identified features and/or quantified parameters.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 11, 2023
    Inventors: James K. MIN, James P. EARLS, Hugo Miguel RODRIGUES MARQUES
  • Publication number: 20230144293
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, and/or the like. In some embodiments, the systems, devices, and methods described herein are further configured to generate one or more assessments of plaque-based diseases from raw medical images using one or more of the identified features and/or quantified parameters.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 11, 2023
    Inventors: James K. MIN, James P. EARLS, Hugo Miguel RODRIGUES MARQUES
  • Patent number: 11642092
    Abstract: A method for characterization of coronary plaque tissue data and perivascular tissue data using image data gathered from a computed tomography (CT) scan along a blood vessel, the image information including radiodensity values of coronary plaque and perivascular tissue located adjacent to the coronary plaque, the method comprising quantifying radiodensity in regions of coronary plaque, quantifying, radiodensity in at least one region of corresponding perivascular tissue adjacent to the coronary plaque, determining gradients of the quantified radiodensity values within the coronary plaque and the quantified radiodensity values within the corresponding perivascular tissue, and determining a ratio of the quantified radiodensity values within the coronary plaque and the corresponding perivascular tissue; and characterizing the coronary plaque by analyzing a gradient of the quantified radiodensity values in the coronary plaque and the corresponding perivascular, and/or the ratio of the coronary plaque radiodensity
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: May 9, 2023
    Assignee: CLEERLY, INC.
    Inventor: James K. Min
  • Publication number: 20230132940
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, and/or the like. In some embodiments, the systems, devices, and methods described herein are further configured to generate one or more assessments of plaque-based diseases from raw medical images using one or more of the identified features and/or quantified parameters.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 4, 2023
    Inventors: James K. Min, James P. Earls, Hugo Miguel Rodrigues Marques, Ben Hootnick
  • Publication number: 20230138889
    Abstract: A method for characterization of coronary plaque tissue data and perivascular tissue data using image data gathered from a computed tomography (CT) scan along a blood vessel, the image information including radiodensity values of coronary plaque and perivascular tissue located adjacent to the coronary plaque, the method comprising quantifying radiodensity in regions of coronary plaque, quantifying, radiodensity in at least one region of corresponding perivascular tissue adjacent to the coronary plaque, determining gradients of the quantified radiodensity values within the coronary plaque and the quantified radiodensity values within the corresponding perivascular tissue, and determining a ratio of the quantified radiodensity values within the coronary plaque and the corresponding perivascular tissue; and characterizing the coronary plaque by analyzing a gradient of the quantified radiodensity values in the coronary plaque and the corresponding perivascular, and/or the ratio of the coronary plaque radiodensity
    Type: Application
    Filed: December 29, 2022
    Publication date: May 4, 2023
    Inventor: James K. MIN
  • Publication number: 20230137093
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, and/or the like. In some embodiments, the systems, devices, and methods described herein are further configured to generate one or more assessments of plaque-based diseases from raw medical images using one or more of the identified features and/or quantified parameters.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 4, 2023
    Inventors: James K. Min, James P. Earls, Hugo Miguel Rodrigues Marques, Ben Hootnick
  • Publication number: 20230140049
    Abstract: A method for characterization of coronary plaque tissue data and perivascular tissue data using image data gathered from a computed tomography (CT) scan along a blood vessel, the image information including radiodensity values of coronary plaque and perivascular tissue located adjacent to the coronary plaque, the method comprising quantifying radiodensity in regions of coronary plaque, quantifying, radiodensity in at least one region of corresponding perivascular tissue adjacent to the coronary plaque, determining gradients of the quantified radiodensity values within the coronary plaque and the quantified radiodensity values within the corresponding perivascular tissue, and determining a ratio of the quantified radiodensity values within the coronary plaque and the corresponding perivascular tissue; and characterizing the coronary plaque by analyzing a gradient of the quantified radiodensity values in the coronary plaque and the corresponding perivascular, and/or the ratio of the coronary plaque radiodensity
    Type: Application
    Filed: December 29, 2022
    Publication date: May 4, 2023
    Inventor: James K. MIN
  • Publication number: 20230137934
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, and/or the like. In some embodiments, the systems, devices, and methods described herein are further configured to generate one or more assessments of plaque-based diseases from raw medical images using one or more of the identified features and/or quantified parameters.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 4, 2023
    Inventors: James K. MIN, James P. EARLS, Hugo Miguel RODRIGUES MARQUES
  • Publication number: 20230138144
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, perform computational fluid dynamics analysis, facilitate assessment of risk of heart disease and coronary artery disease, enhance drug development, determine a CAD risk factor goal, provide atherosclerosis and vascular morphology characterization, and determine indication of myocardial risk, and/or the like.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 4, 2023
    Inventors: James K. Min, James P. Earls, Hugo Miguel Rodrigues Marques, Shant Malkasian, Ben Hootnick
  • Publication number: 20220401050
    Abstract: A method for characterization of coronary plaque tissue data and perivascular tissue data using image data gathered from a computed tomography (CT) scan along a blood vessel, the image information including radiodensity values of coronary plaque and perivascular tissue located adjacent to the coronary plaque, the method comprising quantifying radiodensity in regions of coronary plaque, quantifying, radiodensity in at least one region of corresponding perivascular tissue adjacent to the coronary plaque, determining gradients of the quantified radiodensity values within the coronary plaque and the quantified radiodensity values within the corresponding perivascular tissue, and determining a ratio of the quantified radiodensity values within the coronary plaque and the corresponding perivascular tissue; and characterizing the coronary plaque by analyzing a gradient of the quantified radiodensity values in the coronary plaque and the corresponding perivascular, and/or the ratio of the coronary plaque radiodensity
    Type: Application
    Filed: May 10, 2022
    Publication date: December 22, 2022
    Inventor: James K. MIN
  • Publication number: 20220387675
    Abstract: Systems, methods, and devices having improved conformal properties for biomedical signal measurement are disclosed. A device can have a first polymer substrate coupled to a conductive layer forming a conductive trace electrically coupled to a conductive pad exposed via an opening. The device can have a second polymer substrate forming a first cavity between the first polymer substrate and the second polymer substrate. The device can have a first inlet portion that receives a fluid that expands the first cavity causing the device to conform to an anatomical structure. The structure can be an atrium, such as the left atrium, of the heart of a patient. The device can conform to the walls of the tissue structure, and the conductive pad exposed via the opening can detect a signal from the wall of the tissue structure. The signal can be provided to an external measurement device for processing.
    Type: Application
    Filed: November 6, 2020
    Publication date: December 8, 2022
    Applicant: CORNELL UNIVERSITY
    Inventors: Nazanin Farokhnia, Alexandre Caprio, Varun Kashyap, Subhi Al' Aref, Bobak Mosadegh, James K. Min, Simon Dunham
  • Publication number: 20220386979
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, and/or the like. In some embodiments, the systems, devices, and methods described herein are further configured to generate one or more assessments of plaque-based diseases from raw medical images using one or more of the identified features and/or quantified parameters.
    Type: Application
    Filed: May 10, 2022
    Publication date: December 8, 2022
    Inventors: James K. Min, James P. Earls, Hugo Miguel Rodrigues Marques, Ben Hootnick
  • Publication number: 20220392065
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, perform computational fluid dynamics analysis, facilitate assessment of risk of heart disease and coronary artery disease, enhance drug development, determine a CAD risk factor goal, provide atherosclerosis and vascular morphology characterization, and determine indication of myocardial risk, and/or the like.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 8, 2022
    Inventors: James K. Min, James P. Earls, Hugo Miguel Rodrigues Marques, Shant Malkasian, Ben Hootnick
  • Publication number: 20220375072
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, and/or the like. In some embodiments, the systems, devices, and methods described herein are further configured to generate one or more assessments of plaque-based diseases from raw medical images using one or more of the identified features and/or quantified parameters.
    Type: Application
    Filed: April 4, 2022
    Publication date: November 24, 2022
    Inventors: James K. MIN, James P. EARLS, Hugo Miguel RODRIGUES MARQUES
  • Patent number: 11501436
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, and/or the like. In some embodiments, the systems, devices, and methods described herein are further configured to generate one or more assessments of plaque-based diseases from raw medical images using one or more of the identified features and/or quantified parameters.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: November 15, 2022
    Assignee: CLEERLY, INC.
    Inventors: James K. Min, James P. Earls, Hugo Miguel Rodrigues Marques
  • Publication number: 20220335603
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, and/or the like. In some embodiments, the systems, devices, and methods described herein are further configured to generate one or more assessments of plaque-based diseases from raw medical images using one or more of the identified features and/or quantified parameters.
    Type: Application
    Filed: March 8, 2022
    Publication date: October 20, 2022
    Inventors: JAMES K. MIN, JAMES P. EARLS, HUGO MIGUEL RODRIGUES MARQUES
  • Publication number: 20220327695
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, and/or the like. In some embodiments, the systems, devices, and methods described herein are further configured to generate one or more assessments of plaque-based diseases from raw medical images using one or more of the identified features and/or quantified parameters.
    Type: Application
    Filed: March 15, 2022
    Publication date: October 13, 2022
    Inventors: James K. MIN, James P. EARLS, Hugo Miguel RODRIGUES MARQUES
  • Publication number: 20220284572
    Abstract: The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, and/or the like. In some embodiments, the systems, devices, and methods described herein are further configured to generate one or more assessments of plaque-based diseases from raw medical images using one or more of the identified features and/or quantified parameters.
    Type: Application
    Filed: January 3, 2022
    Publication date: September 8, 2022
    Inventors: James K. MIN, James P. EARLS, Hugo Miguel RODRIGUES MARQUES