Patents by Inventor James K. Schaeffer

James K. Schaeffer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8853792
    Abstract: Embodiments of transistors comprise a gate stack overlying a semiconductor material. The gate stack comprises a deposited oxide layer overlying the semiconductor material, an oxygen-diffusion barrier layer overlying the deposited oxide layer, a high-k dielectric layer overlying the oxygen-diffusion barrier layer, and a conductive material (e.g., an oxygen-gettering conductive material) overlying the high-k dielectric layer. When the conductive material is an oxygen-gettering conductive material, the oxygen-diffusion barrier layer prevents diffusion of oxygen from the deposited oxide layer to the oxygen-gettering conductive material.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 7, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Murshed M. Chowdhury, James K. Schaeffer
  • Patent number: 8735996
    Abstract: A semiconductor structure is provided. The structure includes a semiconductor substrate of a semiconductor material and a gate dielectric having a high dielectric constant dielectric layer with a dielectric constant greater than silicon. The gate dielectric is located on the semiconductor substrate. A gate electrode abuts the gate dielectric. The gate electrodes includes a lower metal layer abutting the gate dielectric, a scavenging metal layer abutting the lower metal layer, an upper metal layer abutting the scavenging metal layer, and a silicon layer abutting the upper metal layer. The scavenging metal layer reduces an oxidized layer at an interface between the upper metal layer and the silicon layer responsive to annealing.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: May 27, 2014
    Assignees: International Business Machines Corporation, Globalfoundries Inc.
    Inventors: Takashi Ando, Unoh Kwon, Vijay Narayanan, James K. Schaeffer
  • Patent number: 8716088
    Abstract: A semiconductor structure is provided. The structure includes a semiconductor substrate of a semiconductor material and a gate dielectric having a high dielectric constant dielectric layer with a dielectric constant greater than silicon. The gate dielectric is located on the semiconductor substrate. A gate electrode abuts the gate dielectric. The gate electrodes includes a lower metal layer abutting the gate dielectric, a scavenging metal layer abutting the lower metal layer, an upper metal layer abutting the scavenging metal layer, and a silicon layer abutting the upper metal layer. The scavenging metal layer reduces an oxidized layer at an interface between the upper metal layer and the silicon layer responsive to annealing.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: May 6, 2014
    Assignees: International Business Machines Corporation, GLOBAL FOUNDRIES Inc.
    Inventors: Takashi Ando, Unoh Kwon, Vijay Narayanan, James K. Schaeffer
  • Publication number: 20140001573
    Abstract: A semiconductor structure is provided. The structure includes a semiconductor substrate of a semiconductor material and a gate dielectric having a high dielectric constant dielectric layer with a dielectric constant greater than silicon. The gate dielectric is located on the semiconductor substrate. A gate electrode abuts the gate dielectric. The gate electrodes includes a lower metal layer abutting the gate dielectric, a scavenging metal layer abutting the lower metal layer, an upper metal layer abutting the scavenging metal layer, and a silicon layer abutting the upper metal layer. The scavenging metal layer reduces an oxidized layer at an interface between the upper metal layer and the silicon layer responsive to annealing.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 2, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Unoh Kwon, Vijay Narayanan, James K. Schaeffer
  • Publication number: 20140004695
    Abstract: A semiconductor structure is provided. The structure includes a semiconductor substrate of a semiconductor material and a gate dielectric having a high dielectric constant dielectric layer with a dielectric constant greater than silicon. The gate dielectric is located on the semiconductor substrate. A gate electrode abuts the gate dielectric. The gate electrodes includes a lower metal layer abutting the gate dielectric, a scavenging metal layer abutting the lower metal layer, an upper metal layer abutting the scavenging metal layer, and a silicon layer abutting the upper metal layer. The scavenging metal layer reduces an oxidized layer at an interface between the upper metal layer and the silicon layer responsive to annealing.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Unoh Kwon, Vijay Narayanan, James K. Schaeffer
  • Patent number: 8415212
    Abstract: A method and apparatus are described for fabricating metal gate electrodes (85, 86) over a high-k gate dielectric layer (32) having a rare earth oxide capping layer (44) in at least the NMOS device area by treating the surface of a rare earth oxide capping layer (44) with an oxygen-free plasma process (42) to improve photoresist adhesion, forming a patterned photoresist layer (52) directly on the rare earth oxide capping layer (44), and then applying a wet etch process (62) to remove the exposed portion of the rare earth oxide capping layer (44) from the PMOS device area.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: April 9, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: James K. Schaeffer, Eric D. Luckowski, Todd C. Bailey, Amy L. Child, Daniel Jaeger, Renee Mo, Ying H. Tsang
  • Patent number: 8309419
    Abstract: A method and apparatus are described for fabricating single metal gate electrodes (35, 36) over a high-k gate dielectric layer (31, 32) that is separately doped in the PMOS and NMOS device areas (96, 97) by forming first capping oxide layer (23) with a first dopant species on a high-k gate dielectric layer (22) in at least the NMOS device area and also forming second capping oxide layer (27) with a second dopant species on a high-k gate dielectric layer (22) in at least the PMOS device area, where the first and second dopant species are diffused into the gate dielectric layer (22) to form a first fixed charge layer (31) in the PMOS device area of the high-k gate dielectric area and a second fixed charge layer (32) in the NMOS device area of the high-k gate dielectric area.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: November 13, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: James K. Schaeffer, Eric D. Luckowski
  • Publication number: 20120104515
    Abstract: Embodiments of transistors comprise a gate stack overlying a semiconductor material. The gate stack comprises a deposited oxide layer overlying the semiconductor material, an oxygen-diffusion barrier layer overlying the deposited oxide layer, a high-k dielectric layer overlying the oxygen-diffusion barrier layer, and a conductive material (e.g., an oxygen-gettering conductive material) overlying the high-k dielectric layer. When the conductive material is an oxygen-gettering conductive material, the oxygen-diffusion barrier layer prevents diffusion of oxygen from the deposited oxide layer to the oxygen-gettering conductive material.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 3, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Murshed M. Chowdhury, James K. Schaeffer
  • Patent number: 8114739
    Abstract: Methods are provided for fabricating a transistor. An exemplary method involves depositing an oxide layer overlying a layer of semiconductor material, forming an oxygen-diffusion barrier layer overlying the oxide layer, forming a layer of high-k dielectric material overlying the oxygen-diffusion barrier layer, forming a layer of conductive material overlying the layer of high-k dielectric material, selectively removing portions of the layer of conductive material, the layer of high-k dielectric material, the oxygen-diffusion barrier layer, and the oxide layer to form a gate stack, and forming source and drain regions about the gate stack. When the conductive material is an oxygen-gettering conductive material, the oxygen-diffusion barrier layer prevents diffusion of oxygen from the deposited oxide layer to the oxygen-gettering conductive material.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: February 14, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Murshed M. Chowdhury, James K. Schaeffer
  • Publication number: 20110223756
    Abstract: A method and apparatus are described for fabricating metal gate electrodes (85, 86) over a high-k gate dielectric layer (32) having a rare earth oxide capping layer (44) in at least the NMOS device area by treating the surface of a rare earth oxide capping layer (44) with an oxygen-free plasma process (42) to improve photoresist adhesion, forming a patterned photoresist layer (52) directly on the rare earth oxide capping layer (44), and then applying a wet etch process (62) to remove the exposed portion of the rare earth oxide capping layer (44) from the PMOS device area.
    Type: Application
    Filed: March 11, 2010
    Publication date: September 15, 2011
    Inventors: James K. Schaeffer, Eric D. Luckowski, Todd C. Bailey, Amy L. Child, Daniel Jaeger, Renee Mo, Ying H. Tsang
  • Publication number: 20110073964
    Abstract: Methods and apparatus are provided for fabricating a transistor. The transistor comprises a gate stack overlying a semiconductor material. The gate stack comprises a deposited oxide layer overlying the semiconductor material, an oxygen-diffusion barrier layer overlying the deposited oxide layer, a high-k dielectric layer overlying the oxygen-diffusion barrier layer, and an oxygen-gettering conductive layer overlying the high-k dielectric layer. The oxygen-diffusion barrier layer prevents diffusion of oxygen from the deposited oxide layer to the oxygen-gettering conductive layer.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 31, 2011
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Murshed M. Chowdhury, James K. Schaeffer
  • Patent number: 7910442
    Abstract: A method including partially etching a first portion of a first layer, wherein the first layer is a conductive layer, is provided. The method further includes removing at least a portion of a second layer. The method further includes completing etching of said first portion of the conductive layer so that said first portion of the conductive layer is removed. The method further includes completing formation of the semiconductor device.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: March 22, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William J. Taylor, Jr., Cristiano Capasso, Srikanth B. Samavedam, James K. Schaeffer
  • Publication number: 20100197128
    Abstract: A method and apparatus are described for fabricating single metal gate electrodes (35, 36) over a high-k gate dielectric layer (31, 32) that is separately doped in the PMOS and NMOS device areas (96, 97) by forming first capping oxide layer (23) with a first dopant species on a high-k gate dielectric layer (22) in at least the NMOS device area and also forming second capping oxide layer (27) with a second dopant species on a high-k gate dielectric layer (22) in at least the PMOS device area, where the first and second dopant species are diffused into the gate dielectric layer (22) to form a first fixed charge layer (31) in the PMOS device area of the high-k gate dielectric area and a second fixed charge layer (32) in the NMOS device area of the high-k gate dielectric area.
    Type: Application
    Filed: February 4, 2009
    Publication date: August 5, 2010
    Inventors: James K. Schaeffer, Eric D. Luckowski
  • Patent number: 7683439
    Abstract: A semiconductor device structure is formed over a semiconductor substrate and has a gate dielectric over the semiconductor substrate and a gate over the gate dielectric. The gate, at an interface with the gate dielectric, comprises a transition metal, carbon, and an electropositive element. The transition metal comprises one of group consisting of tantalum, titanium, hafnium, zirconium, molybdenum, and tungsten. The electropositive element comprises one of a group consisting of a Group IIA element, a Group IIIB element, and lanthanide series element.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: March 23, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Srikanth B. Samavedam, David C. Gilmer, Mark V. Raymond, James K. Schaeffer
  • Patent number: 7666730
    Abstract: A method for forming a semiconductor structure includes forming a channel region layer over a semiconductor layer where the semiconductor layer includes a first and a second well region, forming a protection layer over the channel region layer, forming a first gate dielectric layer over the first well region, forming a first metal gate electrode layer over the first gate dielectric, removing the protection layer, forming a second gate dielectric layer over the channel region layer, forming a second metal gate electrode layer over the second gate dielectric layer, and forming a first gate stack including a portion of each of the first gate dielectric layer and the first metal gate electrode layer over the first well region and forming a second gate stack including a portion of each of the second gate dielectric layer and the second metal gate electrode layer over the channel region layer.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: February 23, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gauri V. Karve, Cristiano Capasso, Srikanth B. Samavedam, James K. Schaeffer, William J. Taylor, Jr.
  • Patent number: 7655550
    Abstract: A semiconductor device has a gate with three conductive layers over a high K gate dielectric. The first layer is substantially oxygen free. The work function is modulated to the desired work function by a second conductive layer in response to subsequent thermal processing. The second layer is a conductive oxygen-bearing metal. With sufficient thickness of the first layer, there is minimal penetration of oxygen from the second layer through the first layer to adversely impact the gate dielectric but sufficient penetration of oxygen to change the work function to a more desirable level. A third layer, which is metallic, is deposited over the second layer. A polysilicon layer is deposited over the third layer. The third layer prevents the polysilicon layer and the oxygen-bearing layer from reacting together.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: February 2, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: James K. Schaeffer, David C. Gilmer, Mark V. Raymond, Philip J. Tobin, Srikanth B. Samavedam
  • Patent number: 7648884
    Abstract: A resistive device (44) and a transistor (42) are formed. Each uses a portion of a metal layer (18) that is formed at the same time and thus additional process steps are avoided to remove the metal from the resistive device. The metal used in the resistive device is selectively treated to increase the resistance in the resistive device. A polycrystalline semiconductor material layer (34) overlies the metal layer in the resistive device. The combination of these layers provides the resistive device. In one form the metal is treated after formation of the polycrystalline semiconductor material layer. In one form the metal treatment involves an implant of a species, such as oxygen, to increase the resistivity of the metal. Various transistor structures are formed using the untreated portion of the metal layer as a control electrode.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: January 19, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Byoung W. Min, James K. Schaeffer, David C. Sing
  • Publication number: 20090286387
    Abstract: A semiconductor process and apparatus fabricate a metal gate electrode by forming a first conductive layer (14) over a gate dielectric layer (12) and then selectively introducing nitrogen into the portions of the first conductive layer (14) in the PMOS device region (1), either by annealing (42) a nitrogen-containing diffusion layer (22) formed in the PMOS device region (1) or by performing an ammonia anneal process (82) while the NMOS device region (2) is masked. By introducing nitrogen into the first conductive layer (14), the work function is modulated toward PMOS band edge.
    Type: Application
    Filed: May 16, 2008
    Publication date: November 19, 2009
    Inventors: David C. Gilmer, Srikanth B. Samavedam, James K. Schaeffer, Voon-Yew Thean
  • Publication number: 20090029538
    Abstract: A method including partially etching a first portion of a first layer, wherein the first layer is a conductive layer, is provided. The method further includes removing at least a portion of a second layer. The method further includes completing etching of said first portion of the conductive layer so that said first portion of the conductive layer is removed. The method further includes completing formation of the semiconductor device.
    Type: Application
    Filed: July 24, 2007
    Publication date: January 29, 2009
    Inventors: William J. Taylor, JR., Cristiano Capasso, Srikanth B. Samavedam, James K. Schaeffer
  • Publication number: 20090004792
    Abstract: A method for forming a semiconductor structure includes forming a channel region layer over a semiconductor layer where the semiconductor layer includes a first and a second well region, forming a protection layer over the channel region layer, forming a first gate dielectric layer over the first well region, forming a first metal gate electrode layer over the first gate dielectric, removing the protection layer, forming a second gate dielectric layer over the channel region layer, forming a second metal gate electrode layer over the second gate dielectric layer, and forming a first gate stack including a portion of each of the first gate dielectric layer and the first metal gate electrode layer over the first well region and forming a second gate stack including a portion of each of the second gate dielectric layer and the second metal gate electrode layer over the channel region layer.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Inventors: Gauri V. Karve, Cristiano Capasso, Srikanth B. Samavedam, James K. Schaeffer, William J. Taylor, JR.