Patents by Inventor James Keith Hodgson

James Keith Hodgson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230208432
    Abstract: An apparatus, system, and method for digital-to-analog (converter) control are provided. A DAC includes a first resistor ladder including a plurality of first electrical taps into different portions of the first resistor ladder, first and second pass gate trees coupled to receive outputs from the first electrical taps, first and second buffers coupled to receive outputs from the first and second pass gate trees, respectively, a second resistor ladder coupled to receive and be biased by outputs of the first and second buffers, the second resistor ladder including a plurality of second electrical taps into different portions of the second resistor ladder, and third, fourth, and fifth pass gate trees coupled to receive outputs from the second electrical taps.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Inventors: Fabrice Paillet, Jason Muhlestein, James Keith Hodgson, SHIVADARSHAN BIDADI RAJEURS, George Matthew, Anand Ramasundar, Cary Renzema, Po-Cheng Chen, Sergio Carlo Rodriguez, Seng Rou Tey
  • Publication number: 20230205244
    Abstract: An apparatus, system, and method for digital voltage regulator (DVR) control are provided. A DVR includes comparators configured to determine whether VLOAD drops below a gradual non-linear control (NLC) undershoot threshold voltage, rises above or drops below a reference voltage, and rises above a gradual NLC overshoot threshold voltage, respectively, power gates (PGs) configured to adjust VOUT based on a provided PG code; and VR controller circuitry comprising synchronous LC circuitry configured to increase or decrease, by a first increment, the PG code responsive to the VLOAD dropping below the reference voltage and rising above the reference voltage, and asynchronous gradual NLC circuitry configured to increase or decrease, by a second increment greater than the first increment and less than half a maximum PG code value, the PG code responsive to the VLOAD dropping below the gradual NLC undershoot threshold voltage and rising above the gradual NLC overshoot threshold voltage.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Inventors: Anand Ramasundar, Cary Renzema, Fabrice Paillet, James Keith Hodgson, Po-Cheng Chen, Sergio Carlo Rodriguez, Harish K. Krishnamurthy, Jason Muhlestein
  • Publication number: 20230208437
    Abstract: A digitally selectable power gate with thermometer-encoded upper bits may provide solutions for problems digital power gate-based regulators. These solutions may include the use of a fully binary power gate, either in structure or by local decoding of binary control signal to an addressable row-based power gate. This provides improved performance over a row-based code rotation, which is intended to avoid instantaneous overheating of power gate devices but may not mitigate aging effects. Another solution includes ganging a primary DLVR and one or more secondaries. The primary DLVR may include a voltage sense and active controller, which may forward its PG code to secondary instances. Therm and current sensor rotation may be performed locally at the secondaries and a current monitor data may be rolled up from all ganged DLVRs.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Inventors: Sami Hyvonen, Fabrice Paillet, James Keith Hodgson, Anand Ramasundar, Cary Renzema, George Matthew, Sergio Carlo Rodriguez, Po-Cheng Chen, Sandeep Chilka, Bharadwaj Soundararajan
  • Publication number: 20230168705
    Abstract: Embodiments herein relate to a feedback loop in a digital voltage regulator for controlling an output voltage. To avoid instability at light current loads, a gain of the loop is reduced as a power gate code indicates a reduced number of branches in set of current sources are enabled. In an example implementation, the code is classified into one range of a number of ranges, and the gain is set based on the one range. The gain can decrease each time the code enters a lower range, as indicated by the code crossing a threshold or predetermined value. For example, the gain can decrease by half each time the code enters a lower range.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 1, 2023
    Inventors: Sergio Carlo Rodriguez, Cary D, Renzema, Amit K. Jain, Po-Cheng Chen, Fabrice Paillet, Anand Ramasundar, James Keith Hodgson
  • Publication number: 20230092022
    Abstract: An apparatus, system, and method for voltage regulator (VR) control are provided. An apparatus can include first, second, and third comparators configured to determine whether a load voltage (VLOAD) drops below a lower non-linear control (NLC) threshold, drops below a lower linear control (LC) threshold, and exceeds an upper LC threshold, respectively. The apparatus can include power gates (PGs) configured to adjust an output voltage (VOUT) based on a provided power gate (PG) code. The apparatus can include voltage regulator (VR) controller circuitry comprising synchronous LC circuitry and asynchronous NLC circuitry, the LC circuitry configured to increment or decrement the PG code responsive to the VLOAD dropping below the LC threshold and exceeding the upper LC threshold, respectively, and the NLC circuitry configured to increase the PG code based on a number of consecutive NLC droop events and responsive to the VLOAD dropping below the lower NLC threshold.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 23, 2023
    Inventors: Fabrice Paillet, Anand Ramasundar, Khondker Ahmed, Harish K. Krishnamurthy, Cary Renzema, Christopher Mandic, James Keith Hodgson
  • Publication number: 20220113751
    Abstract: A reduced-size replica of power gate transistors may be used within a closed-loop voltage regulator to measure the average current delivered by the transistors in the non-replica power gate. The measured current is compared against a known reference current, and a feedback loop is used to modify the gate bias of the power gate and replica power gate transistors. An improved current sensing power gate replica solution may include measuring current from a small replica of the power gate and extrapolating the total current by digitally multiplying the replica current by the ratio of the size of the enabled power gates to the size of the replicas. The current through the replicas, which substantially matches the current in equivalent power gate devices, may be collected on an analog bus and conducted across a known resistor to generate a voltage that determines an estimated current of the power gate devices.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 14, 2022
    Inventors: James Keith Hodgson, Fabrice Paillet, Christopher J. Mandic, Cary Renzema, Anand Ramasundar, Sami Hyvonen, Po-Cheng Chen, Alex Santiago Rodriguez, Sergio Carlo Rodriguez, Saravanan Ramamoorthy, Ruthvin Jeevan Suvarna