Patents by Inventor James L. Duggan

James L. Duggan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9163461
    Abstract: Earth-boring rotary drill bits may include a bit body attached to a shank assembly at a joint. The joint may be configured to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference at the joint. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit. Methods for attaching a shank assembly to a bit body of an earth-boring rotary drill bit include configuring a joint to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: October 20, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, James L. Duggan, Anupam K. Singh
  • Publication number: 20140284113
    Abstract: Earth-boring rotary drill bits may include a bit body attached to a shank assembly at a joint. The joint may be configured to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference at the joint. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit. Methods for attaching a shank assembly to a bit body of an earth-boring rotary drill bit include configuring a joint to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference.
    Type: Application
    Filed: June 5, 2014
    Publication date: September 25, 2014
    Inventors: Redd H. Smith, James L. Duggan, Anupam K. Singh
  • Patent number: 8746373
    Abstract: Earth-boring rotary drill bits may include a bit body attached to a shank assembly at a joint. The joint may be configured to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference at the joint. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit. Methods for attaching a shank assembly to a bit body of an earth-boring rotary drill bit include configuring a joint to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: June 10, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, James L. Duggan, Anupam K. Singh
  • Patent number: 8309018
    Abstract: Methods of forming bit bodies for earth-boring bits include assembling green components, brown components, or fully sintered components, and sintering the assembled components. Other methods include isostatically pressing a powder to form a green body substantially composed of a particle-matrix composite material, and sintering the green body to provide a bit body having a desired final density. Methods of forming earth-boring bits include providing a bit body substantially formed of a particle-matrix composite material and attaching a shank to the body. The body is provided by pressing a powder to form a green body and sintering the green body. Earth-boring bits include a unitary structure substantially formed of a particle-matrix composite material. The unitary structure includes a first region configured to carry cutters and a second region that includes a threaded pin. Earth-boring bits include a shank attached directly to a body substantially formed of a particle-matrix composite material.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 13, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Jared D. Gladney, James A. Oxford, Benjamin J. Chrest
  • Patent number: 8079429
    Abstract: Geometric compensation techniques are used to improve the accuracy by which features may be located on drill bits formed using particle compaction and sintering processes. In some embodiments, a positional error to be exhibited by at least one feature in a less than fully sintered bit body upon fully sintering the bit body is predicted and the at least one feature is formed on the less than fully sintered bit body at a location at least partially determined by the predicted positional error. In other embodiments, bit bodies of earth-boring rotary drill bits are designed to include a design drilling profile and a less than fully sintered bit body is formed including a drilling profile having a shape differing from a shape of the design drilling profile. Less than fully sintered bit bodies of earth-boring rotary drill bits are formed using such methods.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: December 20, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Oliver Matthews, III
  • Patent number: 8065935
    Abstract: A rotary drag bit for drilling a subterranean formation includes a plurality of support elements affixed to the bit body, each forming at least a portion of a cutting element pocket. Each of a plurality of cutting elements has a substantially cylindrical body and is at least partially disposed within a cutter pocket. At least a portion of the substantially cylindrical body of each cutting element is directly secured to at least a portion of a substantially arcuate surface of the bit body. At least a portion of a substantially planar surface of each cutting element matingly engages at least a portion of a substantially planar surface of a support element.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: November 29, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: William H. Sherwood, Jr., L. Richard Borremans, Robert J. Costo, Jr., James L. Duggan
  • Publication number: 20110186354
    Abstract: Earth-boring rotary drill bits including a bit body attached to a shank assembly at a joint. In some embodiments, the joint may be configured to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference at the joint. In additional embodiments, the joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit. Methods for attaching a shank assembly to a bit body of an earth-boring rotary drill bit include configuring a joint to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference. Additional embodiments include configuring a joint to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference.
    Type: Application
    Filed: June 3, 2009
    Publication date: August 4, 2011
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Redd H. Smith, James L. Duggan, Anupam K. Singh
  • Publication number: 20100263935
    Abstract: Methods of forming bit bodies for earth-boring bits include assembling green components, brown components, or fully sintered components, and sintering the assembled components. Other methods include isostatically pressing a powder to form a green body substantially composed of a particle-matrix composite material, and sintering the green body to provide a bit body having a desired final density. Methods of forming earth-boring bits include providing a bit body substantially formed of a particle-matrix composite material and attaching a shank to the body. The body is provided by pressing a powder to form a green body and sintering the green body. Earth-boring bits include a unitary structure substantially formed of a particle-matrix composite material. The unitary structure includes a first region configured to carry cutters and a second region that includes a threaded pin. Earth-boring bits include a shank attached directly to a body substantially formed of a particle-matrix composite material.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Jared D. Gladney, James A. Oxford, Benjamin J. Chrest
  • Patent number: 7775287
    Abstract: Earth-boring rotary drill bits including a bit body attached to a shank. In some embodiments, the bit body and the shank may have abutting surfaces concentric to an interface axis offset relative to a longitudinal axis of the drill bit. In additional embodiments, the bit body and the shank may have generally frustoconical abutting surfaces. Methods for attaching a shank and a bit body of an earth-boring rotary drill bit include abutting a surface of a shank against a surface of a bit body, and causing the abutting surfaces to be concentric to an axis that is offset or shifted relative to a longitudinal axis of the drill bit.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: August 17, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: James L. Duggan, Redd H. Smith
  • Patent number: 7776256
    Abstract: Methods of forming bit bodies for earth-boring bits include assembling green components, brown components, or fully sintered components, and sintering the assembled components. Other methods include isostatically pressing a powder to form a green body substantially composed of a particle-matrix composite material, and sintering the green body to provide a bit body having a desired final density. Methods of forming earth-boring bits include providing a bit body substantially formed of a particle-matrix composite material and attaching a shank to the body. The body is provided by pressing a powder to form a green body and sintering the green body. Earth-boring bits include a unitary structure substantially formed of a particle-matrix composite material. The unitary structure includes a first region configured to carry cutters and a second region that includes a threaded pin. Earth-boring bits include a shank attached directly to a body substantially formed of a particle-matrix composite material.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: August 17, 2010
    Assignee: Baker Huges Incorporated
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Jared D. Gladney, James A. Oxford, Benjamin J. Chrest
  • Publication number: 20100155147
    Abstract: A shrink-fit sleeve assembly comprising a bit body includes at least one sleeve port with a substantially tubular sleeve disposed therein and interferingly engaged therewith. The sleeve port includes an internal surface of substantially circular cross-section, and the tubular sleeve includes an internal nozzle port and an external surface of substantially circular cross-section. A lateral dimension of an external surface is equal to or greater than a first dimension at ambient temperature. A nozzle assembly and a method of manufacturing or retrofitting a drill bit are also disclosed.
    Type: Application
    Filed: March 10, 2010
    Publication date: June 24, 2010
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: James Andy Oxford, John H. Stevens, James L. Duggan, Redd H. Smith
  • Patent number: 7703556
    Abstract: Earth-boring rotary drill bits including a bit body attached to a shank assembly at a joint. In some embodiments, the joint may be configured to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference at the joint. In additional embodiments, the joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit. Methods for attaching a shank assembly to a bit body of an earth-boring rotary drill bit include configuring a joint to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference. Additional embodiments include configuring a joint to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: April 27, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, James L. Duggan, Anupam K. Singh
  • Patent number: 7681668
    Abstract: A shrink-fit sleeve assembly comprising a bit body includes at least one sleeve port with a substantially tubular sleeve disposed therein and interferingly engaged therewith. The sleeve port includes an internal surface of substantially circular cross-section, and the tubular sleeve includes an internal nozzle port and an external surface of substantially circular cross-section. A lateral dimension of an external surface is equal to or greater than a first dimension at ambient temperature. A nozzle assembly and a method of manufacturing or retrofitting a drill bit are also disclosed.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: March 23, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: James Andy Oxford, John H. Stevens, James L. Duggan, Redd H. Smith
  • Publication number: 20090301786
    Abstract: Geometric compensation techniques are used to improve the accuracy by which features may be located on drill bits formed using particle compaction and sintering processes. In some embodiments, a positional error to be exhibited by at least one feature in a less than fully sintered bit body upon fully sintering the bit body is predicted and the at least one feature is formed on the less than fully sintered bit body at a location at least partially determined by the predicted positional error. In other embodiments, bit bodies of earth-boring rotary drill bits are designed to include a design drilling profile and a less than fully sintered bit body is formed including a drilling profile having a shape differing from a shape of the design drilling profile. Less than fully sintered bit bodies of earth-boring rotary drill bits are formed using such methods.
    Type: Application
    Filed: June 4, 2008
    Publication date: December 10, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Oliver Matthews, III
  • Publication number: 20090301787
    Abstract: Earth-boring rotary drill bits including a bit body attached to a shank assembly at a joint. In some embodiments, the joint may be configured to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference at the joint. In additional embodiments, the joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit. Methods for attaching a shank assembly to a bit body of an earth-boring rotary drill bit include configuring a joint to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference. Additional embodiments include configuring a joint to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference.
    Type: Application
    Filed: June 4, 2008
    Publication date: December 10, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Redd H. Smith, James L. Duggan, Anupam K. Singh
  • Publication number: 20090158898
    Abstract: A rotary drag bit for drilling a subterranean formation includes a plurality of support elements affixed to the bit body, each forming at least a portion of a cutting element pocket. Each of a plurality of cutting elements has a substantially cylindrical body and is at least partially disposed within a cutter pocket. At least a portion of the substantially cylindrical body of each cutting element is directly secured to at least a portion of a substantially arcuate surface of the bit body. At least a portion of a substantially planar surface of each cutting element matingly engages at least a portion of a substantially planar surface of a support element.
    Type: Application
    Filed: February 27, 2009
    Publication date: June 25, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: William H. Sherwood, JR., L. Richard Borremans, Robert J. Costo, JR., James L. Duggan
  • Patent number: 7520345
    Abstract: A rotary drag bit for drilling a subterranean formation includes a plurality of support elements affixed to the bit body, each forming at least a portion of a cutting element pocket. Each of a plurality of cutting elements has a substantially cylindrical body and is at least partially disposed within a cutter pocket. At least a portion of the substantially cylindrical body of each cutting element is directly secured to at least a portion of a substantially arcuate surface of the bit body. At least a portion of a substantially planar surface of each cutting element matingly engages at least a portion of a substantially planar surface of a support element.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: April 21, 2009
    Assignee: Baker Hughes Incorporated
    Inventors: William H. Sherwood, Jr., L. Richard Borremans, Robert J. Costo, Jr., James L. Duggan
  • Publication number: 20080236899
    Abstract: A shrink-fit sleeve assembly comprising a bit body includes at least one sleeve port with a substantially tubular sleeve disposed therein and interferingly engaged therewith. The sleeve port includes an internal surface of substantially circular cross-section, and the tubular sleeve includes an internal nozzle port and an external surface of substantially circular cross-section. A lateral dimension of the external surface is equal to or greater than the first dimension at ambient temperature. A nozzle assembly and a method of manufacturing or retrofitting a drill bit are also disclosed.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: James Andy Oxford, John H. Stevens, James L. Duggan, Redd H. Smith
  • Publication number: 20080223622
    Abstract: Methods of forming cutting element pockets in earth-boring tools include machining at least one recess to define at least one surface of a cutting element pocket using a cutter oriented at an angle to a longitudinal axis of the cutting element pocket. Methods of forming earth-boring tools include forming a bit body and forming at least one cutting element pocket therein using a rotating cutter oriented at an angle relative to a longitudinal axis of the cutting element pocket being formed. Earth-boring tools have a bit body comprising a first surface defining a lateral sidewall of a cutting element pocket, a second surface defining an end wall of the cutting element pocket, and another surface defining a groove located between the first and second surfaces that extends into the body to enable a cutting element to abut against an area of the lateral sidewall and end wall of the pocket.
    Type: Application
    Filed: March 13, 2007
    Publication date: September 18, 2008
    Inventors: James L. Duggan, John H. Stevens, Redd H. Smith
  • Publication number: 20080135304
    Abstract: Earth-boring rotary drill bits including a bit body attached to a shank. In some embodiments, the bit body and the shank may have abutting surfaces concentric to an interface axis offset relative to a longitudinal axis of the drill bit. In additional embodiments, the bit body and the shank may have generally frustoconical abutting surfaces. Methods for attaching a shank and a bit body of an earth-boring rotary drill bit include abutting a surface of a shank against a surface of a bit body, and causing the abutting surfaces to be concentric to an axis that is offset or shifted relative to a longitudinal axis of the drill bit.
    Type: Application
    Filed: December 12, 2006
    Publication date: June 12, 2008
    Inventors: James L. Duggan, Redd H. Smith