Patents by Inventor James L. Gaddy

James L. Gaddy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040236149
    Abstract: A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
    Type: Application
    Filed: May 5, 2004
    Publication date: November 25, 2004
    Applicants: Bioengineering Resources, Inc., Celanese International Corporation
    Inventors: James L. Gaddy, Edgar C. Clausen, Ching-Whan Ko, Leslie E. Wade, Carl V. Wikstrom
  • Patent number: 6753170
    Abstract: A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: June 22, 2004
    Assignees: Bioengineering Resources, Inc., Celanese International Corporation
    Inventors: James L. Gaddy, Edgar C. Clausen, Ching-Whan Ko, Leslie E. Wade, Carl V. Wikstrom
  • Publication number: 20030211585
    Abstract: A stable continuous method for producing ethanol from the anaerobic bacterial fermentation of a gaseous substrate containing at least one reducing gas involves culturing a fermentation bioreactor anaerobic, acetogenic bacteria in a liquid nutrient medium; supplying the gaseous substrate to the bioreactor; and manipulating the bacteria in the bioreactor by reducing the redox potential, or increasing the NAD(P)H TO NAD(P) ratio, in the fermentation broth after the bacteria achieves a steady state and stable cell concentration in the bioreactor. The free acetic acid concentration in the bioreactor is maintained at less than 5 g/L free acid. This method allows ethanol to be produced in the fermentation broth in the bioreactor at a productivity greater than 10 g/L per day. Both ethanol and acetate are produced in a ratio of ethanol to acetate ranging from 1:1 to 20:1.
    Type: Application
    Filed: March 11, 2003
    Publication date: November 13, 2003
    Inventors: James L. Gaddy, Dinesh K. Arora, Ching-Whan Ko, John Randall Phillips, Rahul Basu, Carl V. Wikstrom, Edgar C. Clausen
  • Publication number: 20020086378
    Abstract: A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
    Type: Application
    Filed: January 16, 2002
    Publication date: July 4, 2002
    Inventors: James L. Gaddy, Edgar C. Clausen, Ching-Whan Ko, Leslie E. Wade, Carl V, Wikstrom
  • Patent number: 6368819
    Abstract: A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: April 9, 2002
    Assignees: Bioengineering Resources, Inc., Celanese International Corporation
    Inventors: James L. Gaddy, Edgar C. Clausen, Ching-Whan Ko, Leslie E. Wade, Carl V. Wikstrom
  • Patent number: 6340581
    Abstract: A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.
    Type: Grant
    Filed: December 23, 1998
    Date of Patent: January 22, 2002
    Assignee: Bioengineering Resources, Inc.
    Inventor: James L. Gaddy
  • Patent number: 6136577
    Abstract: A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: October 24, 2000
    Assignee: Bioengineering Resources, Inc.
    Inventor: James L. Gaddy
  • Patent number: 5807722
    Abstract: A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.
    Type: Grant
    Filed: November 30, 1994
    Date of Patent: September 15, 1998
    Assignee: Bioengineering Resources, Inc.
    Inventor: James L. Gaddy
  • Patent number: 5783081
    Abstract: Methods of improving anaerobic digestion by enhancing the microorganism population through the creation of a nutrient environment more favorable for microbial growth and through the addition of microbes and, more particularly, by the addition of chelating agents, chelating agents and nutrients, and methanogens. Methods for the improved production of said methanogens by the provision of controlled amount of methanol and H.sub.2 and CO.sub.2. Methods for the improved preservation of said methanogen by ultra-freezing and freeze-drying.
    Type: Grant
    Filed: April 6, 1994
    Date of Patent: July 21, 1998
    Inventor: James L. Gaddy
  • Patent number: 5593886
    Abstract: A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.
    Type: Grant
    Filed: June 10, 1994
    Date of Patent: January 14, 1997
    Inventor: James L. Gaddy
  • Patent number: 5342524
    Abstract: Methods of improving anaerobic digestion by enhancing the microorganism population through the creation of a nutrient environment more favorable for microbial growth and through the addition of microbes and, more particularly, by the addition of chelating agents, chelating agents and nutrients, and methanogens. Methods for the improved production of said methanogens by the provision of controlled amount of methanol and H.sub.2 and CO.sub.2. Methods for the improved preservation of said methanogen by ultra-freezing and freeze-drying.
    Type: Grant
    Filed: May 24, 1991
    Date of Patent: August 30, 1994
    Inventor: James L. Gaddy
  • Patent number: 5188673
    Abstract: A single step method of converting lignocellulosic materials to sugars including combining and mixing a low solids content lignocellulosic material with concentrated sulfuric acid, allowing the reaction to proceed and then separating the sulfuric acid and sugar solution from the reaction product. A modified single step method includes dilution of the reaction product with water, followed by continued reaction and subsequent separation of the sulfuric acid and sugar solution.
    Type: Grant
    Filed: October 12, 1988
    Date of Patent: February 23, 1993
    Inventors: Edgar C. Clausen, James L. Gaddy
  • Patent number: 5173429
    Abstract: A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H.sub.2 O and/or CO.sub.2 and H.sub.2 in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate.
    Type: Grant
    Filed: November 9, 1990
    Date of Patent: December 22, 1992
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: James L. Gaddy, Edgar C. Clausen
  • Patent number: 4645658
    Abstract: A method of recovering concentrated hydrochloric acid from the product obtained from the acid hydrolysis of a cellulose containing material such as biomass. The method involves contacting such product with an extracting solvent, of which a major portion is acetophenone, to separate the product into a hydrochloric acid enriched phase and a hydrochloric acid depleted phase and then separating and recovering the hydrochloric acid from the hydrochloric acid enriched phase.
    Type: Grant
    Filed: April 30, 1985
    Date of Patent: February 24, 1987
    Inventors: James L. Gaddy, Edgar C. Clausen
  • Patent number: 4608245
    Abstract: A method of recovering concentrated sulfuric acid from the product obtained from the acid hydrolysis of a cellulose-containing material such a biomass. The method involves contacting the product with an extraction solvent comprising one or more of the C.sub.4 -C.sub.7 alcohols as the major component to separate the product into a sulfuric acid enriched phase. The sulfuric acid from this enriched phase is then separated and recovered by a further extraction procedure.
    Type: Grant
    Filed: October 17, 1985
    Date of Patent: August 26, 1986
    Inventors: James L. Gaddy, Edgar C. Clausen
  • Patent number: 4355108
    Abstract: Ethanol is produced from cellulosic material such as corn stover by treating the cellulosic material in a first hydrolysis stage with a dilute acid solution to hydrolyze pentosans to xylose, separating solids from the resultant hydrolysate, treating the solids in a second hydrolysis stage with a concentrated acid solution to hydrolyze hexosans to glucose, and fermenting the glucose to ethanol by passing a solution of the glucose over a fixed film of yeast prepared by attaching yeast with a polyfunctional agent to a proteinaceous material coated on a solid support. The use of a first hydrolysis stage avoids the production of furfural which is toxic and inhibits yeast fermentation. Xylose produced from the first stage may also be fermented to ethanol with the fixed film of yeast.
    Type: Grant
    Filed: May 22, 1980
    Date of Patent: October 19, 1982
    Assignee: The Curators of the University of Missouri
    Inventors: James L. Gaddy, Oliver C. Sitton