Patents by Inventor James L. Hedrick

James L. Hedrick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10738153
    Abstract: Techniques regarding the synthesis of one or more polymers through one or more ring-opening polymerizations conducted within a flow reactor and facilitated by one or more anionic catalysts are provided. For example, one or more embodiments can comprise a method, which can comprise functionalizing, via a post-polymerization reaction within a flow reactor, a chemical compound by covalently bonding a trimethylsilyl protected thiol to a pendent functional group of the chemical compound in a presence of a catalyst. The pendent functional group can comprise a perfluoroaryl group and a methylene group.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: August 11, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Nathaniel H. Park, James L. Hedrick, Victoria A. Piunova, Dmitry Zubarev, Gavin O. Jones, Robert M. Waymouth, Binhong Lin
  • Publication number: 20200221695
    Abstract: Techniques regarding polymers with antimicrobial functionality are provided. For example, one or more embodiments described herein can regard a polymer, which can comprise a repeating ionene unit. The repeating ionene unit can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a terephthalamide structure. Further, the repeating ionene unit can have antimicrobial functionality.
    Type: Application
    Filed: March 25, 2020
    Publication date: July 16, 2020
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chuan Yang, Yi Yan Yang
  • Publication number: 20200221692
    Abstract: Techniques regarding chemical compounds with antimicrobial functionality are provided. For example, one or more embodiments describe herein can comprise a monomer that can comprise a molecular backbone. The molecular backbone can comprise a bis(urea)guanidinium structure covalently bonded to a functional group, which can comprise a radical. Also, the monomer can have supramolecular assembly functionality.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 16, 2020
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Yi Yan Yang
  • Patent number: 10702610
    Abstract: Polythioaminal polymers are made from hexahydrotriazine precursors and dithiol precursors. The precursors are blended together and subjected to mild heating to make the polymers. The polymers have the general structure wherein each R1 is independently an organic or hetero-organic group, each R2 is independently a substituent having molecular weight no more than about 120 Daltons, X and Z are each a sulfur-bonded species, at least one of X and Z is not hydrogen, and n is an integer greater than or equal to 1. X and Z may be hydrogen or a functional group, such as a thiol-reactive group. The reactive thiol groups of the polythioaminal may be used to attach thiol-reactive end capping species. By using water soluble or water degradable dithiols, such as polyether dithiols, water soluble polythioaminals may be made. Some such polymers may be used to deliver therapeutics with non-toxic aqueous degradation products.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: July 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Willy Chin, Jeannette M. Garcia, James L. Hedrick, Xiyu Ke, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10696849
    Abstract: Embodiments are directed to a method of making an antifouling and bactericidal coating with tailorable surface topology. The method includes depositing a layer of branched polyethyleneimine (BPEI) and diamino-functionalized poly(propylene oxide) (PPO) in a mixture of water and organic solvent on a substrate to form a layer of BPEI/PPO. The method includes depositing a layer of glyoxal in a water-containing solution on the layer of BPEI/PPO. The method further includes curing the layer of BPEI/PPO and layer of glyoxal to form a homogenous, glyoxal crosslinked BPEI/PPO coating, where the curing induces local precipitation and alteration of the glyoxal crosslinked BPEI/PPO coating to provide a textured surface.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: June 30, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY
    Inventors: Amos Cahan, Xin Ding, Mareva B. Fevre, James L. Hedrick, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10696791
    Abstract: A polymer is described herein that includes a plurality of N-J-N or N—C—S repeating units, wherein each J is independently a carbon atom, an alkyl group, or an aryl group; a plurality of hydrophilic groups bonded with the repeating units; and a plurality of hydrophobic groups bonded with the hydrophilic groups and the repeating units. Such polymers may be made into hydrogels by exposure to water, and the hydrogels may be used as delivery vehicles for various payloads.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: June 30, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Publication number: 20200199298
    Abstract: In an embodiment is provided a polymer that includes a plurality of N-J-N or N—C—S repeating units, wherein each J is independently a carbon atom, an alkyl group, or an aryl group; a plurality of hydrophilic groups bonded with the repeating units; and a plurality of hydrophobic groups bonded with the hydrophilic groups and the repeating units. In another embodiment is provided hydrogels of such polymers. The hydrogels may be used as delivery vehicles for various payloads. In another embodiment is provided methods of forming such polymers.
    Type: Application
    Filed: February 27, 2020
    Publication date: June 25, 2020
    Inventors: Dylan J. BODAY, Mareva B. FEVRE, Jeannette M. GARCIA, James L. HEDRICK, Rudy J. WOJTECKI
  • Patent number: 10687530
    Abstract: Techniques regarding ionene and/or polyionene compositions with antimicrobial functionality and enhanced hydrophilicity are provided. For example, one or more embodiments can regard a chemical compound that can comprise an ionene unit, which can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a terephthalamide structure. The ionene unit can have antimicrobial functionality. Further, the chemical compound can comprise a hydrophilic functional group covalently bonded to the ionene unit. Also, the chemical compound can have carbohydrate mimetic functionality.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 23, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Yi Yan Yang, Mu San Zhang
  • Patent number: 10687528
    Abstract: Techniques regarding ionene and/or polyionene compositions with antimicrobial functionalities are provided. For example, one or more embodiments can comprise a chemical compound, which can comprise an ionene unit. The ionene unit can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a norspermidine structure having a carbonyl group. Also, the ionene unit can have antimicrobial functionality.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 23, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chuan Yang, Yi Yan Yang
  • Patent number: 10682313
    Abstract: The subject matter of this invention relates to block copolymers (BCPs) and, more particularly, to block copolymers capable of self-assembly into nanoparticles for the delivery of hydrophobic cargos. The BCPs include a hydrophobic block that contains a thioether functional group that is susceptible to oxidation, transforming the solubility of the block from hydrophobic to hydrophilic, thereby releasing the hydrophobic cargo of the nanoparticle.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: June 16, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, INSTITUTE OF BIOENGINEERING AND NANOTECHNOLOGY, BIOMEDICAL SCIENCES INSTITUTE
    Inventors: Dylan Boday, Willy Chin, Mareva B. Fevre, Jeannette Garcia, James L. Hedrick, Eunice Leong, Nathaniel H. Park, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20200172566
    Abstract: The subject disclosure is directed to functionalized bile acids, preparation thereof, and usage thereof for therapeutic and material applications. In one embodiment, a method of generating functionalized bile acid materials can comprise directly activating a carboxylic acid of a bile acid compound using a coupling agent comprising an amide or ester compound, thereby generating an intermediate bile acid derivative material. The method can further comprise attaching a functional group material to the intermediate bile acid derivative material by reacting the functional group material and the intermediate bile acid derivative material, thereby generating a functionalized bile acid material.
    Type: Application
    Filed: February 7, 2020
    Publication date: June 4, 2020
    Inventors: James L. Hedrick, Nathaniel H. Park
  • Patent number: 10668502
    Abstract: Polymeric coatings and methods of forming polymeric coatings are described. In a method of forming a polymeric coating a first layer is deposited on a substrate. The first layer includes at least one highly soluble diamine component. A second layer is formed on the substrate to contact the first layer. The second layer includes paraformaldehyde and an aromatic diamine including two primary amine groups. Once formed, the first and second layers are heated. Heating causes the components of the first and second layers to cure. For example, the paraformaldehyde from the second layer diffuses into the first layer and reacts via hemiaminal-type chemistry with the high soluble diamine component. The coatings may be substantially homogenous or comprise a compositional gradient in thickness or along the substrate plane depending on deposition methods and other processing parameters.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: June 2, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Patent number: 10667514
    Abstract: Techniques regarding amine monomers that can form ionene compositions with antimicrobial functionality are provided. For example, one or more embodiments described herein can comprise a monomer, which can comprise a molecular backbone. The molecular backbone can comprise a norspermidine structure. The norspermidine structure can comprise a tertiary amino group. Also, the tertiary amino group can comprise a functional group, and an amino group of the norspermidine structure can be capable of being ionized.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 2, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chuan Yang, Yi Yan Yang
  • Publication number: 20200164088
    Abstract: Techniques regarding the transportation of molecular cargo across the BBB are provided. For example, one or more embodiments described herein can comprise a chemical compound to facilitate molecular encapsulation of the molecular cargo. The chemical compound can comprise a diblock copolymer having a molecular backbone comprising a polycarbonate structure and a polyethylene glycol structure. Also, the polycarbonate structure can be functionalized with boronic acid.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 28, 2020
    Inventors: James L. Hedrick, Nathaniel H. Park, Yi Yan Yang, Zhi Xiang Voo, Jeremy Tan
  • Publication number: 20200164080
    Abstract: The subject disclosure is directed to techniques for enhancing the selectivity and efficacy of therapeutic polymers against a broad spectrum of pathogens and cancer cell lines. According to an embodiment, a method is provided that comprises forming a therapeutic polymer based on polymerization of a plurality of therapeutic monomers, wherein the therapeutic polymer provides a therapeutic functionality. The method further comprises attaching biotin to the therapeutic polymer, resulting in a biotin-functionalized therapeutic polymer, wherein the biotin-functionalized therapeutic polymer provides greater therapeutic efficacy relative to the therapeutic polymer.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 28, 2020
    Inventors: James L. Hedrick, Nathaniel H. Park, Yi Yan Yang, Zhi Xiang Voo
  • Publication number: 20200165494
    Abstract: The present invention relates to CNT filled polymer composite system possessing a high thermal conductivity and high temperature stability so that it is a highly thermally conductive for use in 3D and 4D integration for joining device sub-laminate layers. The CNT/polymer composite also has a CTE close to that of Si, enabling a reduced wafer structural warping during high temperature processing cycling. The composition is tailored to be suitable for coating, curing and patterning by means conventionally known in the art.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 28, 2020
    Inventors: James L. Hedrick, Robert D. Miller, Deborah A. Neumayer, Sampath Purushothaman, Mary E. Rothwell, Willi Volksen, Roy R. Yu
  • Publication number: 20200155686
    Abstract: The subject matter of this invention relates to hydrogel compositions and, more particularly, to hydrogel compositions comprising block copolymers (BCPs) capable of self-assembly into nanoparticles for the delivery and controlled release of therapeutic cargos.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 21, 2020
    Inventors: Mareva B. Fevre, James L. Hedrick, Ashlynn Lee, Nathaniel H. Park, Rudy J. Wojtecki, Yi Yan Yang, Zhi Xiang Voo
  • Patent number: 10653349
    Abstract: A diagnostic patch apparatus has a sampling module that includes sampling means for sampling fluid from a patient's skin when the sampling module is placed against the patient's skin, and a sample chamber coupled in fluid communication with the sampling means. The apparatus also has an analysis module that includes a fluid conduit coupled in fluid communication with the sample chamber of the sampling module and a plurality of sensors coupled in fluid communication with the fluid conduit. The apparatus also may have a reader module that includes at least one optical sensor coupled in optical communication with the analysis module, a microcontroller coupled in electrical communication with the at least one sensor of the analysis module, and a wireless communication package coupled in electrical communication with the microcontroller.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: May 19, 2020
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, James L. Hedrick, Minhua Lu, Vince S. Siu
  • Patent number: 10653142
    Abstract: Techniques regarding polymers with antimicrobial functionality are provided. For example, one or more embodiments described herein can regard a polymer, which can comprise a repeating ionene unit. The repeating ionene unit can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a terephthalamide structure. Further, the repeating ionene unit can have antimicrobial functionality.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: May 19, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chuan Yang, Yi Yan Yang
  • Publication number: 20200146296
    Abstract: Techniques regarding star polymers with enhanced antimicrobial functionality are provided. For example, a polymer is provided that can comprise a core that can have a singlet oxygen generator and that can generate a singlet oxygen species upon irradiation with light. The polymer can also comprise a plurality of polycarbonate arms covalently bonded to the core. The plurality of polycarbonate arms can be degradable and can comprise a cation. Further, the plurality of polycarbonate arms can have antimicrobial functionality.
    Type: Application
    Filed: January 9, 2020
    Publication date: May 14, 2020
    Inventors: Victoria A. Piunova, Noah Frederick Fine Nathel, James L. Hedrick, Yi Yan Yang, Willy Chin, Zhi Xiang Voo