Patents by Inventor James L. Pizzuti

James L. Pizzuti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10175074
    Abstract: An electromagnetic flowmeter has a flowtube configured to carry a conductive fluid. The flowtube has wall made of a conductive material. The wall has an inner surface surrounding a fluid flow path for the fluid. A non-conductive liner is positioned to electrically insulate the flowtube wall from the fluid. The flowtube and non-conductive liner define an electrode mounting hole. An electrode extends through the electrode mounting hole. The electrode and the non-conductive liner form a fluidic seal between the electrode mounting hole and the fluid flow path. At least a portion of the electrode is arranged in fluid communication with the flowtube within the electrode mounting hole. A short circuit detector can detect failure of the seal when conductive fluid that has leaked past the seal creates a short circuit as a result of the fluid communication between the flowtube and the electrode mounting hole.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: January 8, 2019
    Assignee: Schneider Electric Systems USA, Inc.
    Inventors: Daniel G. Tower, III, John Yuxiang Xie, James L. Pizzuti, Antoine DeProost
  • Patent number: 10132665
    Abstract: A magnetic flowmeter has a transmitter module that generates a drive signal for driving a magnetic field in a flowing fluid. A flowtube module samples a voltage induced in the fluid by the magnetic field and generates a measurement signal. A single communication path carries the drive signal from the transmitter module to the flowtube module and the measurement signal from the flowtube module to the transmitter module. The flowtube module generates a digital measurement signal. The flowtube module can include a processor for bundling the measurement signal with other information such as calibration data for the flowtube. In addition, the processor can control the timing of flowtube module operations so that the flowtube module samples the induced voltage and transmits the measurement signal to the transmitter module at different times.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: November 20, 2018
    Assignee: Schneider Electric Systems USA, Inc.
    Inventors: James L. Pizzuti, Antoine DeProost
  • Publication number: 20180031400
    Abstract: An electromagnetic flowmeter has a flowtube configured to carry a conductive fluid. The flowtube has wall made of a conductive material. The wall has an inner surface surrounding a fluid flow path for the fluid. A non-conductive liner is positioned to electrically insulate the flowtube wall from the fluid. The flowtube and non-conductive liner define an electrode mounting hole. An electrode extends through the electrode mounting hole. The electrode and the non-conductive liner form a fluidic seal between the electrode mounting hole and the fluid flow path. At least a portion of the electrode is arranged in fluid communication with the flowtube within the electrode mounting hole. A short circuit detector can detect failure of the seal when conductive fluid that has leaked past the seal creates a short circuit as a result of the fluid communication between the flowtube and the electrode mounting hole.
    Type: Application
    Filed: October 10, 2017
    Publication date: February 1, 2018
    Applicant: Schneider Electric Systems USA, Inc.
    Inventors: Daniel G. Tower, III, John Yuxiang Xie, James L. Pizzuti, Antoine DeProost
  • Patent number: 9810559
    Abstract: An electromagnetic flowmeter has a flowtube configured to carry a conductive fluid. The flowtube has wall made of a conductive material. The wall has an inner surface surrounding a fluid flow path for the fluid. A non-conductive liner is positioned to electrically insulate the flowtube wall from the fluid. The flowtube and non-conductive liner define an electrode mounting hole. An electrode extends through the electrode mounting hole. The electrode and the non-conductive liner form a fluidic seal between the electrode mounting hole and the fluid flow path. At least a portion of the electrode is arranged in fluid communication with the flowtube within the electrode mounting hole. A short circuit detector can detect failure of the seal when conductive fluid that has leaked past the seal creates a short circuit as a result of the fluid communication between the flowtube and the electrode mounting hole.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: November 7, 2017
    Assignee: Invensys Systems, Inc.
    Inventors: Daniel G. Tower, III, John Yuxiang Xie, James L. Pizzuti, Antoine DeProost
  • Publication number: 20160273948
    Abstract: An electromagnetic flowmeter has a flowtube configured to carry a conductive fluid. The flowtube has wall made of a conductive material. The wall has an inner surface surrounding a fluid flow path for the fluid. A non-conductive liner is positioned to electrically insulate the flowtube wall from the fluid. The flowtube and non-conductive liner define an electrode mounting hole. An electrode extends through the electrode mounting hole. The electrode and the non-conductive liner form a fluidic seal between the electrode mounting hole and the fluid flow path. At least a portion of the electrode is arranged in fluid communication with the flowtube within the electrode mounting hole. A short circuit detector can detect failure of the seal when conductive fluid that has leaked past the seal creates a short circuit as a result of the fluid communication between the flowtube and the electrode mounting hole.
    Type: Application
    Filed: March 16, 2015
    Publication date: September 22, 2016
    Applicant: INVENSYS SYSTEMS, INC.
    Inventors: Daniel G. Tower, III, John Yuxiang Xie, James L. Pizzuti, Antoine DeProost
  • Publication number: 20160231152
    Abstract: A magnetic flowmeter has a transmitter module that generates a drive signal for driving a magnetic field in a flowing fluid. A flowtube module samples a voltage induced in the fluid by the magnetic field and generates a measurement signal. A single communication path carries the drive signal from the transmitter module to the flowtube module and the measurement signal from the flowtube module to the transmitter module. The flowtube module generates a digital measurement signal. The flowtube module can include a processor for bundling the measurement signal with other information such as calibration data for the flowtube. In addition, the processor can control the timing of flowtube module operations so that the flowtube module samples the induced voltage and transmits the measurement signal to the transmitter module at different times.
    Type: Application
    Filed: February 5, 2015
    Publication date: August 11, 2016
    Applicant: INVENSYS SYSTEMS, INC.
    Inventors: James L. Pizzuti, Antoine DeProost