Patents by Inventor James Leacock

James Leacock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180225944
    Abstract: A system for monitoring multiple patients within a facility comprises a plurality of monitoring apparatuses, a central communication hub, and a plurality of notification devices. The monitoring apparatuses generate data relating to the status of patients, and send the data to the communication hub. The data may include an alarm signal. In a variant, the monitoring apparatuses do not generate alarm signals. Rather the communication hub processes the data and generates alarms if needed. Alarms are sent by the communication hub to the notification devices to inform employees of the facility of the source of the alarm.
    Type: Application
    Filed: April 9, 2018
    Publication date: August 9, 2018
    Applicant: J. Brasch Co., LLC
    Inventors: John Joseph Brasch, Gordon Smith, JR., James Leacock
  • Patent number: 9940807
    Abstract: A system for monitoring multiple patients within a facility comprises a plurality of monitoring apparatuses, a central communication hub, and a plurality of notification devices. The monitoring apparatuses generate data relating to the status of patients, and send the data to the communication hub. The data may include an alarm signal. In a variant, the monitoring apparatuses do not generate alarm signals. Rather the communication hub processes the data and generates alarms if needed. Alarms are sent by the communication hub to the notification devices to inform employees of the facility of the source of the alarm.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: April 10, 2018
    Assignee: J. Brasch Co., LLC
    Inventors: John Joseph Brasch, Gordon Smith, Jr., James Leacock
  • Patent number: 8163831
    Abstract: Methods of preparing conductive thermoset precursors containing carbon nanotubes is provided. Also provided is a method of preparing conductive thermosets containing carbon nanotubes. The carbon nanotubes may in individual form or in the form of aggregates having a macromorpology resembling the shape of a cotton candy, bird nest, combed yarn or open net. Preferred multiwalled carbon nanotubes have diameters no greater than 1 micron and preferred single walled carbon nanotubes have diameters less than 5 nm. Carbon nanotubes may be adequately dispersed in a thermoset precursor by using a extrusion process generally reserved for thermoplastics. The thermoset precursor may be a precursor for epoxy, phenolic, polyimide, urethane, polyester, vinyl ester or silicone. A preferred thermoset precursor is a bisphenol A derivative.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: April 24, 2012
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Alan Fischer, Timothy Jozokos, James Leacock, Andrew Rich
  • Publication number: 20120061621
    Abstract: Methods of preparing conductive thermoset precursors containing carbon nanotubes is provided. Also provided is a method of preparing conductive thermosets containing carbon nanotubes. The carbon nanotubes may in individual form or in the form of aggregates having a macromorpology resembling the shape of a cotton candy, bird nest, combed yarn or open net. Preferred multiwalled carbon nanotubes have diameters no greater than 1 micron and preferred single walled carbon nanotubes have diameters less than 5 nm. Carbon nanotubes may be adequately dispersed in a thermoset precursor by using a extrusion process generally reserved for thermoplastics. The thermoset precursor may be a precursor for epoxy, phenolic, polyimide, urethane, polyester, vinyl ester or silicone. A preferred thermoset precursor is a bisphenol A derivative.
    Type: Application
    Filed: February 8, 2011
    Publication date: March 15, 2012
    Inventors: Alan Fischer, Timothy Jozokos, James Leacock, Andrew Rich
  • Publication number: 20110133133
    Abstract: Methods of preparing conductive thermoset precursors containing carbon nanotubes is provided. Also provided is a method of preparing conductive thermosets containing carbon nanotubes. The carbon nanotubes may in individual form or in the form of aggregates having a macromorpology resembling the shape of a cotton candy, bird nest, combed yarn or open net. Preferred multiwalled carbon nanotubes have diameters no greater than 1 micron and preferred single walled carbon nanotubes have diameters less than 5 nm. Carbon nanotubes may be adequately dispersed in a thermoset precursor by using a extrusion process generally reserved for thermoplastics. The thermoset precursor may be a precursor for epoxy, phenolic, polyimide, urethane, polyester, vinyl ester or silicone. A preferred thermoset precursor is a bisphenol A derivative.
    Type: Application
    Filed: February 8, 2011
    Publication date: June 9, 2011
    Inventors: Alan Fischer, Timothy Jozokos, James Leacock, Andrew Rich
  • Patent number: 7926549
    Abstract: A method of and apparatus for casting metal strip involving assembling a pair of casting rolls laterally disposed to form a nip between them, assembling an elongated metal delivery nozzle extending along and above the nip between the casting rolls, with at least one segment having opposing side walls and end walls, an inner trough extending longitudinally within between side walls and forming passages between the side walls and the inner trough and communicating with side outlets adjacent bottom portions, introducing molten metal through the elongate metal delivery nozzle to form a casting pool of molten metal supported on the casting rolls above the nip, such that molten metal is caused to flow into the inner trough of the delivery nozzle, from the inner trough through the passages between the inner trough and sidewalls, and from the passages through the side outlets in a substantially lateral direction into the casting pool, and counter rotating the casting rolls to deliver cast strip downwardly from the ni
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: April 19, 2011
    Assignee: Nucor Corporation
    Inventors: W. Kent Cooper, James Leacock McIntosh, Peter Woodberry, Rama B. Mahapatra, Malcolm McDonald
  • Patent number: 7926550
    Abstract: A metal strip casting apparatus and a method of casting continuous metal strip includes assembling a pair of counter-rotatable casting rolls having casting surfaces positioned laterally forming a nip between for casting, and delivering molten metal through a delivery nozzle disposed above the nip capable to form a casting pool supported on the casting rolls. The delivery nozzle comprises segments each having elongate nozzle body with longitudinally extending side walls, end walls and a bottom part to form an inner trough, a nozzle insert disposed above bottom portions of the inner trough of each segment and supported relative to the nozzle body through which incoming molten metal may be delivered to the inner trough of each segment of the delivery nozzle, and the elongate nozzle body of each segment having passageways in fluid communication with the inner trough and outlet openings capable of discharging molten metal from the nozzle body outwardly into the casting pool.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: April 19, 2011
    Inventors: Walter N. Blejde, Mike Schueren, David J. Sosinsky, Brian D. White, Mark Schlichting, W. Kent Cooper, James Leacock McIntosh, Peter Woodberry, Rama B. Mahapatra, Malcolm McDonald
  • Patent number: 7910650
    Abstract: Methods of preparing conductive thermoset precursors containing carbon nanotubes is provided. Also provided is a method of preparing conductive thermosets containing carbon nanotubes. The carbon nanotubes may in individual form or in the form of aggregates having a macromorpology resembling the shape of a cotton candy, bird nest, combed yarn or open net. Preferred multiwalled carbon nanotubes have diameters no greater than 1 micron and preferred single walled carbon nanotubes have diameters less than 5 nm. Carbon nanotubes may be adequately dispersed in a thermoset precursor by using a extrusion process generally reserved for thermoplastics. The thermoset precursor may be a precursor for epoxy, phenolic, polyimide, urethane, polyester, vinyl ester or silicone. A preferred thermoset precursor is a bisphenol A derivative.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 22, 2011
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Alan Fischer, Timothy Jozokos, James Leacock, Andrew Rich
  • Patent number: 7566749
    Abstract: Methods of preparing conductive thermoset precursors containing carbon nanotubes is provided. Also provided is a method of preparing conductive thermosets containing carbon nanotubes. The carbon nanotubes may in individual form or in the form of aggregates having a macromorpology resembling the shape of a cotton candy, bird nest, combed yarn or open net. Preferred multiwalled carbon nanotubes have diameters no greater than 1 micron and preferred single walled carbon nanotubes have diameters less than 5 nm. Carbon nanotubes may be adequately dispersed in a thermoset precursor by using a extrusion process generally reserved for thermoplastics. The thermoset precursor may be a precursor for epoxy, phenolic, polyimide, urethane, polyester, vinyl ester or silicone. A preferred thermoset precursor is a bisphenol A derivative.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: July 28, 2009
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Alan Fischer, Timothy Jozokos, James Leacock, Andrew Rich
  • Publication number: 20080173424
    Abstract: A method of and apparatus for casting metal strip involving assembling a pair of casting rolls laterally disposed to form a nip between them, assembling an elongated metal delivery nozzle extending along and above the nip between the casting rolls, with at least one segment having opposing side walls and end walls, an inner trough extending longitudinally within between side walls and forming passages between the side walls and the inner trough and communicating with side outlets adjacent bottom portions, introducing molten metal through the elongate metal delivery nozzle to form a casting pool of molten metal supported on the casting rolls above the nip, such that molten metal is caused to flow into the inner trough of the delivery nozzle, from the inner trough through the passages between the inner trough and sidewalls, and from the passages through the side outlets in a substantially lateral direction into the casting pool, and counter rotating the casting rolls to deliver cast strip downwardly from the ni
    Type: Application
    Filed: January 14, 2008
    Publication date: July 24, 2008
    Applicant: NUCOR CORPORATION
    Inventors: W. Kent Cooper, James Leacock McIntosh, Peter Woodberry, Rama B. Mahapatra, Malcolm McDonald
  • Publication number: 20080036123
    Abstract: Methods of preparing conductive thermoset precursors containing carbon nanotubes is provided. Also provided is a method of preparing conductive thermosets containing carbon nanotubes. The carbon nanotubes may in individual form or in the form of aggregates having a macromorpology resembling the shape of a cotton candy, bird nest, combed yarn or open net. Preferred multiwalled carbon nanotubes have diameters no greater than 1 micron and preferred single walled carbon nanotubes have diameters less than 5 nm. Carbon nanotubes may be adequately dispersed in a thermoset precursor by using a extrusion process generally reserved for thermoplastics. The thermoset precursor may be a precursor for epoxy, phenolic, polyimide, urethane, polyester, vinyl ester or silicone. A preferred thermoset precursor is a bisphenol A derivative.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 14, 2008
    Applicant: Hyperion Catalysis International, Inc.
    Inventors: Alan Fischer, Timothy Jozokos, James Leacock, Andrew Rich
  • Publication number: 20070238826
    Abstract: Methods of preparing conductive thermoset precursors containing carbon nanotubes is provided. Also provided is a method of preparing conductive thermosets containing carbon nanotubes. The carbon nanotubes may in individual form or in the form of aggregates having a macromorpology resembling the shape of a cotton candy, bird nest, combed yarn or open net. Preferred multiwalled carbon nanotubes have diameters no greater than 1 micron and preferred single walled carbon nanotubes have diameters less than 5 nm. Carbon nanotubes may be adequately dispersed in a thermoset precursor by using a extrusion process generally reserved for thermoplastics. The thermoset precursor may be a precursor for epoxy, phenolic, polyimide, urethane, polyester, vinyl ester or silicone. A preferred thermoset precursor is a bisphenol A derivative.
    Type: Application
    Filed: August 31, 2005
    Publication date: October 11, 2007
    Applicant: Hyperion Catalysis International, Inc.
    Inventors: Alan Fischer, Timothy Jozokos, James Leacock, Andrew Rich
  • Patent number: 6069664
    Abstract: The present invention is embodied in an apparatus and method for converting a progressive video signal to an interlaced video signal from which the progressive video signal may be recovered. The invention is further embodied in an apparatus and method for converting such an interlaced video signal to a progressive video signal. A progressive-to-interlaced video converter includes a progressive video preprocessor and a converter. The progressive video preprocessor replaces at least one scan line in a video frame by its preceding or succeeding scan line. Alternatively, the preprocessor may assign a predetermined value to one or multiple scan lines at appropriate position(s) in a frame. In either scenario, each frame will carry at least one redundant scan line. The frame modification information will be encoded to an ancillary data section of a digital video stream.
    Type: Grant
    Filed: June 4, 1997
    Date of Patent: May 30, 2000
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Daniel Qiang Zhu, Kaarlo Juhani Hamalainen, Thomas James Leacock, Kevin John Stec
  • Patent number: 5841413
    Abstract: A plasma display device employs a minimum moving pixel distortion (MPD) set of codewords for reducing visually perceived artifacts viewed on a plasma display panel (PDP). The plasma display device includes a minimum MPD mapping process, which maps by, for example, a ROM look-up table, received pixel intensity values into intensity levels corresponding to selected ones of the set of codewords. By increasing the number of subfields (or rounding the least significant bits (LSBs) of the intensity pixels), redundant codewords that express pixel intensities can be generated based on the sustain pulse vector with predetermined constraints. An optimal set of codewords can be determined though (1) a random search; (2) an exhaustive search; (3) dynamic programming or (4) a genetic algorithm based search which minimizes the MPD distance. The mapped codewords are stored in a ROM lookup table as display data by a plasma display controller.
    Type: Grant
    Filed: June 13, 1997
    Date of Patent: November 24, 1998
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Daniel Qiang Zhu, Thomas James Leacock
  • Patent number: 5819035
    Abstract: A video signal encoding/decoding system reduces ringing noise by using a post-filter which performs anisotropic diffusion on decoded data. The exemplary system uses an encoding/decoding technique such as that developed by the Moving Picture Experts Group (MPEG). The post-filter processes individual blocks of pixels, assigning an individual edge significance threshold to each block. Noise removal occurs if the edge strength is below the threshold and is inhibited if the edge strength is above the threshold.
    Type: Grant
    Filed: October 20, 1995
    Date of Patent: October 6, 1998
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Patrick William Devaney, Daniel Chandran Gnanaprakasam, Thomas James Leacock
  • Patent number: 4263448
    Abstract: An oxidizable hydrocarbon is oxidized in a reaction zone at elevated temperature in the presence of a liquid reaction medium by introducing the hydrocarbon and a feed stream containing molecular oxygen to the reaction zone under conditions sufficient to oxidize at least a portion of the hydrocarbon; withdrawing at least a portion of the liquid reaction medium from the reaction zone; passing at least a portion of the withdrawn liquid reaction medium to an oxygen injection zone located external to the reaction zone; contacting the liquid in said oxygen-injection zone with a gas stream containing molecular oxygen under conditions sufficient to form a two-phase gas/liquid mixture; and passing said two-phase gas/liquid mixture to the reaction zone as the feed of molecular oxygen thereto.
    Type: Grant
    Filed: March 30, 1979
    Date of Patent: April 21, 1981
    Assignee: Halcon Research and Development Corp.
    Inventor: James Leacock
  • Patent number: 4252748
    Abstract: Acetone produced as a by-product in the reaction of methyl acetate with carbon monoxide and hydrogen in the presence of a Group VIII noble metal catalyst and methyl iodide is recovered from the reaction mixture by supplying acetone to provide an acetone to methyl iodide molar ratio of at least 1:10 and distilling the mixture comprising methyl iodide, acetone and methyl acetate to separate substantially all of the methyl iodide and the supplied acetone and some of the methyl acetate from the remaining acetone and methyl acetate and thereafter separating the acetone from the methyl acetate.
    Type: Grant
    Filed: December 29, 1978
    Date of Patent: February 24, 1981
    Assignee: Halcon Research and Development Corporation
    Inventors: Robert Hoch, James Leacock, Chee-Gen Wan
  • Patent number: 4191710
    Abstract: Water is removed from the methacrolein-containing effluent produced by the catalytic oxidation of isobutylene or tertiary butyl alcohol by quenching the effluent in water in a plurality of quenching steps under graduated increasing pressure.
    Type: Grant
    Filed: September 6, 1977
    Date of Patent: March 4, 1980
    Assignee: Halcon Research and Development Corp.
    Inventor: James Leacock
  • Patent number: 4147721
    Abstract: In an oxidation process for converting methacrolein to methacrylic acid, methacrylic acid is recovered by cooling and condensing the effluent from the oxidation, followed by azeotropic distillation of the condensate with a suitable solvent, such as methyl n-propyl ketone. The condensed effluent contains methacrylic acid and water as the major components along with by-product acetic acid, a minor amount of unreacted methacrolein and impurities. Substantially dry crude methacrylic acid is separated as a bottom product from the azeotropic distillation and an azeotrope of water and the solvent is taken overhead and condensed. After condensation, solvent-rich and water-rich phases form and are separated. The solvent-rich phase is returned to the distillation column as a reflux, while the water-rich phase is sent to a stripping column for recovery of residual solvent. Water is withdrawn from the bottom of the stripping column and recycled or discarded, as desired.
    Type: Grant
    Filed: April 6, 1978
    Date of Patent: April 3, 1979
    Assignee: Halcon Research and Development Corporation
    Inventor: James Leacock
  • Patent number: 4092132
    Abstract: Methacrolein is recovered from a gaseous mixture containing it by bringing the gaseous mixture into contact with acetic acid.
    Type: Grant
    Filed: September 6, 1977
    Date of Patent: May 30, 1978
    Assignee: Halcon Research and Development Corp.
    Inventor: James Leacock