Patents by Inventor James Leslie Thornton

James Leslie Thornton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10746895
    Abstract: A method for determining a fractional volume of at least one component of a formation includes entering into a computer a number of detected radiation events resulting from imparting neutrons into the formation at an energy level of at least 1 million electron volts (MeV). The detected radiation events correspond to at least one of an energy level of the imparted neutrons and thermal or epithermal energy neutrons. A measurement of at least one additional petrophysical parameter of the formation is made. The at least one additional petrophysical parameter measurement and at least one of a fast neutron cross-section and a thermal neutron cross-section determined from the detected radiation events are used in the computer to determine the fractional volume of the at least one component of the formation. In another embodiment, the fast neutron cross-section and the thermal neutron cross-section may be used on combination to determine the fractional volume.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: August 18, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Tong Zhou, Christian Stoller, James Leslie Thornton, David Alan Rose
  • Publication number: 20200081149
    Abstract: A method for determining a fractional volume of at least one component of a formation includes entering into a computer a number of detected radiation events resulting from imparting neutrons into the formation at an energy level of at least 1 million electron volts (MeV). The detected radiation events correspond to at least one of an energy level of the imparted neutrons and thermal or epithermal energy neutrons. A measurement of at least one additional petrophysical parameter of the formation is made. The at least one additional petrophysical parameter measurement and at least one of a fast neutron cross-section and a thermal neutron cross-section determined from the detected radiation events are used in the computer to determine the fractional volume of the at least one component of the formation. In another embodiment, the fast neutron cross-section and the thermal neutron cross-section may be used on combination to determine the fractional volume.
    Type: Application
    Filed: October 31, 2019
    Publication date: March 12, 2020
    Inventors: Tong Zhou, Christian Stoller, James Leslie Thornton, David Alan Rose
  • Patent number: 10466383
    Abstract: A method for determining a fractional volume of at least one component of a formation includes entering into a computer a number of detected radiation events resulting from imparting neutrons into the formation at an energy level of at least 1 million electron volts (MeV). The detected radiation events correspond to at least one of an energy level of the imparted neutrons and thermal or epithermal energy neutrons. A measurement of at least one additional petrophysical parameter of the formation is made. The at least one additional petrophysical parameter measurement and at least one of a fast neutron cross-section and a thermal neutron cross-section determined from the detected radiation events are used in the computer to determine the fractional volume of the at least one component of the formation. In another embodiment, the fast neutron cross-section and the thermal neutron cross-section may be used on combination to determine the fractional volume.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: November 5, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Tong Zhou, Christian Stoller, James Leslie Thornton, David Alan Rose
  • Publication number: 20160349398
    Abstract: A method for determining a fractional volume of at least one component of a formation includes entering into a computer a number of detected radiation events resulting from imparting neutrons into the formation at an energy level of at least 1 million electron volts (MeV). The detected radiation events correspond to at least one of an energy level of the imparted neutrons and thermal or epithermal energy neutrons. A measurement of at least one additional petrophysical parameter of the formation is made. The at least one additional petrophysical parameter measurement and at least one of a fast neutron cross-section and a thermal neutron cross-section determined from the detected radiation events are used in the computer to determine the fractional volume of the at least one component of the formation. In another embodiment, the fast neutron cross-section and the thermal neutron cross-section may be used on combination to determine the fractional volume.
    Type: Application
    Filed: May 29, 2015
    Publication date: December 1, 2016
    Inventors: Tong Zhou, Christian Stoller, James Leslie Thornton, David Alan Rose