Patents by Inventor James Lords

James Lords has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11902042
    Abstract: A method includes receiving, from an entity, a request to organize a survey on a topic, based on the request, organizing a survey of a plurality of people, recording a video of the survey, obtaining a transcription of the video and linking the transcription of the video in time to the video to yield a processed video. The method can further include presenting, on a user interface to the entity based on the processed video, the video and the transcription of the video, wherein each word in the transcription of the video is selectable by the entity, receiving a selection of text by the entity from the transcription of the video and, based on the selection of the text, presenting a portion of the video at a time that is associated with when a participant in the video spoke the text. The user can also select a “clip to next speaker” option to generate a clip.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: February 13, 2024
    Assignee: Mercury Analytics, LLC
    Inventors: Scott James Brickner, Matthew Thomas Williams, Peter Calvin Viss, Elizabeth Michael Karen, James Lord Ardery
  • Patent number: 11821912
    Abstract: Methods of producing augmented probe system images and associated probe systems. A method of producing an augmented probe system image includes recording a base probe system image, generating the augmented probe system image at least partially based on the base probe system image, and presenting the augmented probe system image. The augmented probe system image includes a representation of at least a portion of the probe system that is obscured in the base probe system image. In some examples, a probe system includes a chuck, a probe assembly, an imaging device, and a controller programmed to perform methods disclosed herein.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: November 21, 2023
    Assignee: FormFactor, Inc.
    Inventors: Anthony James Lord, Gavin Neil Fisher, David Randle Hess
  • Publication number: 20230275775
    Abstract: A method includes receiving, from an entity, a request to organize a survey on a topic, based on the request, organizing a survey of a plurality of people, recording a video of the survey, obtaining a transcription of the video and linking the transcription of the video in time to the video to yield a processed video. The method can further include presenting, on a user interface to the entity based on the processed video, the video and the transcription of the video, wherein each word in the transcription of the video is selectable by the entity, receiving a selection of text by the entity from the transcription of the video and, based on the selection of the text, presenting a portion of the video at a time that is associated with when a participant in the video spoke the text. The user can also select a “clip to next speaker” option to generate a clip.
    Type: Application
    Filed: February 28, 2022
    Publication date: August 31, 2023
    Inventors: Scott James BRICKNER, Matthew Thomas WILLIAMS, Peter Calvin VISS, Elizabeth Michael KAREN, James Lord ARDERY
  • Publication number: 20220387544
    Abstract: The invention relates to Pol? inhibitors for use in the treatment of a cancer associated with a Shieldin deficiency and to pharmaceutical compositions comprising said Pol? inhibitors.
    Type: Application
    Filed: August 9, 2019
    Publication date: December 8, 2022
    Applicant: Artios Pharma Limited
    Inventors: Helen Marie Ruth ROBINSON, Graeme Cameron Murray SMITH, Christopher James LORD, Diana ZATREANU
  • Patent number: 11454799
    Abstract: Microscopes with objective assembly crash detection and methods of utilizing the same are disclosed herein. For example, a microscope comprises a microscope body, an objective assembly comprising an objective lens, an objective assembly mount configured to separably attach the objective assembly to the microscope body, and an orientation detection circuit configured to indicate when a relative orientation between the microscope body and the objective assembly differs from a predetermined relative orientation.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: September 27, 2022
    Assignee: FormFactor, Inc.
    Inventors: Gerald Lee Gisler, Sia Choon Beng, Anthony James Lord, Gavin Neil Fisher
  • Publication number: 20210373073
    Abstract: Methods of producing augmented probe system images and associated probe systems. A method of producing an augmented probe system image includes recording a base probe system image, generating the augmented probe system image at least partially based on the base probe system image, and presenting the augmented probe system image. The augmented probe system image includes a representation of at least a portion of the probe system that is obscured in the base probe system image. In some examples, a probe system includes a chuck, a probe assembly, an imaging device, and a controller programmed to perform methods disclosed herein.
    Type: Application
    Filed: May 6, 2021
    Publication date: December 2, 2021
    Inventors: Anthony James Lord, Gavin Neil Fisher, David Randle Hess
  • Publication number: 20200241278
    Abstract: Microscopes with objective assembly crash detection and methods of utilizing the same are disclosed herein. For example, a microscope comprises a microscope body, an objective assembly comprising an objective lens, an objective assembly mount configured to separably attach the objective assembly to the microscope body, and an orientation detection circuit configured to indicate when a relative orientation between the microscope body and the objective assembly differs from a predetermined relative orientation.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 30, 2020
    Inventors: Gerald Lee Gisler, Sia Choon Beng, Anthony James Lord, Gavin Neil Fisher
  • Patent number: 10530188
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the switching between modes, the amount of energy received by the adaptive receiver may be controlled. This control is a form of adaptive resonance control or Q control.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: January 7, 2020
    Assignee: Philips IP Ventures B.V.
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Matthew J. Norconk, Thomas J. Leppien, Scott A. Mollema, Joshua K. Schwannecke, Benjamin C. Moes, A. Esai Umenei, John James Lord, Robert D. Gruich
  • Patent number: 10187042
    Abstract: A wireless power transfer component with a selectively adjustable resonator circuit having a Q control subcircuit that varies the Q factor of the resonator circuit to control the amount of power relayed by the resonator circuit. The resonator circuit may be in the wireless power supply, the wireless power receiver, an intermediate resonator or any combination thereof. The resonator circuit may be actively configured based on a feedback circuit. The feedback circuit may sense a characteristic in the secondary circuit or elsewhere and actively operate the control subcircuit based on the sensed characteristic. The feedback circuit may cause the Q control subcircuit to change (reduce or increase) the Q factor when the sensed characteristic crosses a threshold value. The Q control subcircuit may include a variable resistor having a value that can be varied to adjust the Q factor of the resonator circuit.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: January 22, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: David W. Baarman, Benjamin C. Moes, Joshua K. Schwannecke, Joshua B. Taylor, Neil W. Kuyvenhoven, Matthew J. Norconk, Colin J. Moore, John James Lord, Kristen J. Blood
  • Publication number: 20190008856
    Abstract: The present invention relates to Ataxia-Telangiectasia Mutated and Rad3-related protein kinase (ATR) inhibitors for use in methods of treating BAF-complex deficient cancer. The present invention further provides methods for identifying ATR inhibitors for use in the treatment of BAF complex gene mutant or deficient cancers. Medical uses and methods relating to the treatment of synovial sarcoma using ATR inhibitors are also provided.
    Type: Application
    Filed: January 6, 2017
    Publication date: January 10, 2019
    Inventors: Christopher James Lord, Chris Williamson, Samuel Jones
  • Publication number: 20180226835
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the switching between modes, the amount of energy received by the adaptive receiver may be controlled. This control is a form of adaptive resonance control or Q control.
    Type: Application
    Filed: January 17, 2018
    Publication date: August 9, 2018
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Matthew J. Norconk, Thomas J. Leppien, Scott A. Mollema, Joshua K. Schwannecke, Benjamin C. Moes, A. Esai Umenei, John James Lord, Robert D. Gruich
  • Patent number: 9912166
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the switching between modes, the amount of energy received by the adaptive receiver may be controlled. This control is a form of adaptive resonance control or Q control.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 6, 2018
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Matthew J. Norconk, Thomas J. Leppien, Scott A. Mollema, Joshua K. Schwannecke, Benjamin C. Moes, A. Esai Umenei, John James Lord, Robert D. Gruich
  • Patent number: 9680311
    Abstract: A wireless power system for wirelessly transferring power to a remote device from a wireless power supply at a range of distances. Various embodiments are contemplated in which reflected impedance from the remote device can be reduced by reducing coupling outside the desired wireless power transfer path, allowing delivery of wireless power over a range of distances. For example, a system incorporating one or more of shielding, spacing, and offsetting may be used to reduce reflected impedance from the remote device. An adapter may also be used to extend the range of wireless power transfer.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 13, 2017
    Assignee: Access Business Group International LLC
    Inventors: Kristen J. Blood, Joshua B. Taylor, Matthew J. Norconk, Colin J. Moore, Benjamin C. Moes, John James Lord
  • Patent number: 9611223
    Abstract: The present invention pertains generally to the field of therapeutic compounds. More specifically the present invention pertains to certain 3-aryl-5-substituted-2/-/-isoquinolin-1-one compounds that, inter alia, inhibit PARP (e.g., PARP1, TNKS1, TNKS2, etc.) and/or Wnt signalling. The present invention also pertains to pharmaceutical compositions comprising such compounds, and the use of such compounds and compositions, both in vitro and in vivo, to inhibit PARP (e.g., PARP1, TNKS1, TNKS2, etc.); to inhibit Wnt signalling; to treat disorders that are ameliorated by the inhibition of PARP (e.g., PARP1, TNKS1, TNKS2, etc.); to treat disorders that are ameliorated by the inhibition of Wnt signalling; to treat proliferative conditions such as cancer, etc.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: April 4, 2017
    Assignee: INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL (THE)
    Inventors: Alan Ashworth, Christopher James Lord, Richard James Rowland Elliott, Dan Niculescu-Duvaz, Roderick Alan Porter, Rehan Aqil, Raymond John Boffey, Melanie Jayne Bayford, Stuart Firth-Clark, Anna Hopkins, Ashley Nicholas Jarvis, Trevor Robert Perrior, Philip Alan Skone, Rebekah Elisabeth Key
  • Publication number: 20160221953
    Abstract: The present invention pertains generally to the field of therapeutic compounds. More specifically the present invention pertains to certain 3-aryl-5-substituted-2/-/-isoquinolin-1-one compounds that, inter alia, inhibit PARP (e.g., PARP1, TNKS1, TNKS2, etc.) and/or Wnt signalling. The present invention also pertains to pharmaceutical compositions comprising such compounds, and the use of such compounds and compositions, both in vitro and in vivo, to inhibit PARP (e.g., PARP1, TNKS1, TNKS2, etc.); to inhibit Wnt signalling; to treat disorders that are ameliorated by the inhibition of PARP (e.g., PARP1, TNKS1, TNKS2, etc.); to treat disorders that are ameliorated by the inhibition of Wnt signalling; to treat proliferative conditions such as cancer, etc.
    Type: Application
    Filed: September 11, 2014
    Publication date: August 4, 2016
    Applicant: Institute of Cancer Research Royal Cancer Hospital (THE)
    Inventors: Alan ASHWORTH, Christopher James LORD, Richard James Rowland ELLIOT, Dan NICULESCU-DUVAZ, Roderick Alan PORTER, Rehan AQIL, Raymond John BOFFEY, Melanie Jayne BAYFORD, Stuart FIRTH-CLARK, Anna HOPKINS, Ashley Nicholas JARVIS, Trevor Robert PERRIOR, Philip Alan SKONE, Rebekah Elisabeth KEY
  • Patent number: 9193689
    Abstract: The present invention pertains generally to the field of therapeutic compounds. More specifically the present invention pertains to certain 3-aryl-5-substituted-2H-isoquinolin-1-one compounds that, inter alia, inhibit PARP (e.g., PARP1, TNKS1, TNKS2, etc.) and/or Wnt signalling. The present invention also pertains to pharmaceutical compositions comprising such compounds, and the use of such compounds and compositions, both in vitro and in vivo, to inhibit PARP (e.g., PARP1, TNKS1, TNKS2, etc.); to inhibit Wnt signalling; to treat disorders that are ameliorated by the inhibition of PARP (e.g., PARP1, TNKS1, TNKS2, etc.); to treat disorders that are ameliorated by the inhibition of Wnt signalling; to treat proliferative conditions such as cancer, etc.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: November 24, 2015
    Assignee: INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL (THE)
    Inventors: Alan Ashworth, Christopher James Lord, Richard James Rowland Elliot, Dan Niculescu-Duvaz, Roderick Porter, Raymond John Boffey, Melanie Jayne Bayford, Stuart Firth-Clark, Ashley Nicholas Jarvis, Trevor Robert Perrior, Rebekah Elisabeth Key
  • Publication number: 20150207333
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the switching between modes, the amount of energy received by the adaptive receiver may be controlled. This control is a form of adaptive resonance control or Q control.
    Type: Application
    Filed: March 14, 2013
    Publication date: July 23, 2015
    Applicant: Access Business Group International LLC
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Matthew J. Norconk, Thomas J. Leppien, Scott A. Mollema, Joshua K. Schwannecke, Benjamin C. Moes, A. Esai Umenei, John James Lord, Robert D. Gruich
  • Publication number: 20150102685
    Abstract: A wireless power system for wirelessly transferring power to a remote device from a wireless power supply at a range of distances. Various embodiments are contemplated in which reflected impedance from the remote device can be reduced by reducing coupling outside the desired wireless power transfer path, allowing delivery of wireless power over a range of distances. For example, a system incorporating one or more of shielding, spacing, and offsetting may be used to reduce reflected impedance from the remote device. An adapter may also be used to extend the range of wireless power transfer.
    Type: Application
    Filed: March 14, 2013
    Publication date: April 16, 2015
    Inventors: Kristen J. Blood, Joshua B. Taylor, Matthew J. Norconk, Colin J. Moore, Benjamin C. Moes, John James Lord
  • Publication number: 20150099732
    Abstract: The present invention pertains generally to the field of therapeutic compounds. More specifically the present invention pertains to certain 3-aryl-5-substituted-2H-isoquinolin-1-one compounds that, inter alia, inhibit PARP (e.g., PARP1, TNKS1, TNKS2, etc.) and/or Wnt signalling. The present invention also pertains to pharmaceutical compositions comprising such compounds, and the use of such compounds and compositions, both in vitro and in vivo, to inhibit PARP (e.g., PARP1, TNKS1, TNKS2, etc.); to inhibit Wnt signalling; to treat disorders that are ameliorated by the inhibition of PARP (e.g., PARP1, TNKS1, TNKS2, etc.); to treat disorders that are ameliorated by the inhibition of Wnt signalling; to treat proliferative conditions such as cancer, etc.
    Type: Application
    Filed: March 7, 2013
    Publication date: April 9, 2015
    Inventors: Alan Ashworth, Christopher James Lord, Richard James Rowland Elliot, Dan Niculescu-Duvaz, Roderick Porter, Raymond John Boffey, Melanie Jayne Bayford, Stuart Firth-Clark, Ashley Nicholas Jarvis, Trevor Robert Perrior, Rebekah Elisabeth Key
  • Publication number: 20150035376
    Abstract: A wireless power transfer component with a selectively adjustable resonator circuit having a Q control subcircuit that varies the Q factor of the resonator circuit to control the amount of power relayed by the resonator circuit. The resonator circuit may be in the wireless power supply, the wireless power receiver, an intermediate resonator or any combination thereof. The resonator circuit may be actively configured based on a feedback circuit. The feedback circuit may sense a characteristic in the secondary circuit or elsewhere and actively operate the control subcircuit based on the sensed characteristic. The feedback circuit may cause the Q control subcircuit to change (reduce or increase) the Q factor when the sensed characteristic crosses a threshold value. The Q control subcircuit may include a variable resistor having a value that can be varied to adjust the Q factor of the resonator circuit.
    Type: Application
    Filed: January 23, 2013
    Publication date: February 5, 2015
    Inventors: David W. Baarman, Benjamin C. Moes, Joshua K. Schwannecke, Joshua B. Taylor, Neil W. Kuyvenhoven, Matthew J. Norconk, Colin J. Moore, John James Lord, Kristen J. Blood