Patents by Inventor James LUMPKIN

James LUMPKIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11988593
    Abstract: The present invention relates to interferometric detection of particles and optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided exhibiting enhanced alignment and stability for interferometric detection of particles and/or optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided that include compensation means for mitigating the impact of internal and external stimuli and changes in operating conditions that can degrade the sensitivity and reliability of particle detection via optical methods, including interferometric-based techniques and/or systems for optical detection of particles having size dimensions less than or equal to 100 nm.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: May 21, 2024
    Assignee: PARTICLE MEASURING SYSTEMS, INC.
    Inventors: Timothy A Ellis, Chris Bonino, Brian A. Knollenberg, James Lumpkin, Daniel Rodier, Dwight Sehler, Mehran Vahdani Moghaddam, Thomas Ramin
  • Publication number: 20240133793
    Abstract: The present invention relates to interferometric detection of particles and optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided exhibiting enhanced alignment and stability for interferometric detection of particles and/or optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided that include compensation means for mitigating the impact of internal and external stimuli and changes in operating conditions that can degrade the sensitivity and reliability of particle detection via optical methods, including interferometric-based techniques and/or systems for optical detection of particles having size dimensions less than or equal to 100 nm.
    Type: Application
    Filed: October 26, 2023
    Publication date: April 25, 2024
    Applicant: PARTICLE MEASURING SYSTEMS, INC.
    Inventors: Timothy A. ELLIS, Chris BONINO, Brian A. KNOLLENBERG, James LUMPKIN, Daniel RODIER, Dwight SEHLER, Mehran Vahdani MOGHADDAM, Thomas RAMIN
  • Patent number: 11946852
    Abstract: Provided herein are optical systems and methods for detecting and characterizing particles. Systems and method are provided which increase the sensitivity of an optical particle counter and allow for detection of smaller particles while analyzing a larger fluid volume. The described systems and methods allow for sensitive and accurate detection and size characterization of nanoscale particles (e.g., less than 50 nm, optionally less than 20 nm, optionally less than 10 nm) for large volumes of analyzed fluids.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: April 2, 2024
    Assignee: PARTICLE MEASURING SYSTEMS, INC.
    Inventors: Daniel Rodier, James Lumpkin, Dwight Sehler, Brian Knollenberg
  • Publication number: 20220155212
    Abstract: Provided herein are optical systems and methods for detecting and characterizing particles. Systems and method are provided which increase the sensitivity of an optical particle counter and allow for detection of smaller particles while analyzing a larger fluid volume. The described systems and methods allow for sensitive and accurate detection and size characterization of nanoscale particles (e.g., less than 50 nm, optionally less than 20 nm, optionally less than 10 nm) for large volumes of analyzed fluids.
    Type: Application
    Filed: December 16, 2021
    Publication date: May 19, 2022
    Applicant: PARTICLE MEASURING SYSTEMS, INC.
    Inventors: Daniel RODIER, James LUMPKIN, Dwight SEHLER, Brian KNOLLENBERG
  • Patent number: 11237095
    Abstract: Provided herein are optical systems and methods for detecting and characterizing particles. Systems and method are provided which increase the sensitivity of an optical particle counter and allow for detection of smaller particles while analyzing a larger fluid volume. The described systems and methods allow for sensitive and accurate detection and size characterization of nanoscale particles (e.g., less than 50 nm, optionally less than 20 nm, optionally less than 10 nm) for large volumes of analyzed fluids.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: February 1, 2022
    Assignee: PARTICLE MEASURING SYSTEMS, INC.
    Inventors: Daniel Rodier, James Lumpkin, Dwight Sehler, Brian Knollenberg
  • Publication number: 20210208054
    Abstract: The present invention relates to interferometric detection of particles and optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided exhibiting enhanced alignment and stability for interferometric detection of particles and/or optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided that include compensation means for mitigating the impact of internal and external stimuli and changes in operating conditions that can degrade the sensitivity and reliability of particle detection via optical methods, including interferometric-based techniques and/or systems for optical detection of particles having size dimensions less than or equal to 100 nm.
    Type: Application
    Filed: November 20, 2020
    Publication date: July 8, 2021
    Applicant: Particle Measuring Systems, Inc.
    Inventors: Timothy A. ELLIS, Chris BONINO, Brian A. KNOLLENBERG, James LUMPKIN, Daniel RODIER, Dwight SEHLER, Mehran Vahdani MOGHADDAM, Thomas RAMIN
  • Publication number: 20200355599
    Abstract: Provided herein are optical systems and methods for detecting and characterizing particles. Systems and method are provided which increase the sensitivity of an optical particle counter and allow for detection of smaller particles while analyzing a larger fluid volume. The described systems and methods allow for sensitive and accurate detection and size characterization of nanoscale particles (e.g., less than 50 nm, optionally less than 20 nm, optionally less than 10 nm) for large volumes of analyzed fluids.
    Type: Application
    Filed: April 24, 2020
    Publication date: November 12, 2020
    Applicant: PARTICLE MEASURING SYSTEMS, INC.
    Inventors: Daniel RODIER, James LUMPKIN, Dwight SEHLER, Brian KNOLLENBERG
  • Patent number: 9989462
    Abstract: This invention relates to optical particle counters and methods capable of effectively distinguishing signals generated from particle light scattering from sources of noise. Embodiments of the invention, for example, use multisensory detector configurations for identifying and distinguishing signals corresponding to fluctuations in laser intensity from signals corresponding to particle light scattering for the detection and characterization of submicron particles. In an embodiment, for example, methods and systems of the invention compare signals from different detector elements of a detector array to identify and characterize noise events, such as noise generated from laser intensity instability, thereby allow for the detection and characterization of smaller particles. The system and methods of the present invention, thus, provide an effective means of reducing false positives caused by noise or interference while allowing for very sensitive particle detection.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: June 5, 2018
    Assignee: PARTICLE MEASURING SYSTEMS, INC.
    Inventors: James Lumpkin, Matthew Melton
  • Publication number: 20160356711
    Abstract: This invention relates to optical particle counters and methods capable of effectively distinguishing signals generated from particle light scattering from sources of noise. Embodiments of the invention, for example, use multisensory detector configurations for identifying and distinguishing signals corresponding to fluctuations in laser intensity from signals corresponding to particle light scattering for the detection and characterization of submicron particles. In an embodiment, for example, methods and systems of the invention compare signals from different detector elements of a detector array to identify and characterize noise events, such as noise generated from laser intensity instability, thereby allow for the detection and characterization of smaller particles. The system and methods of the present invention, thus, provide an effective means of reducing false positives caused by noise or interference while allowing for very sensitive particle detection.
    Type: Application
    Filed: April 1, 2016
    Publication date: December 8, 2016
    Inventors: James LUMPKIN, Matthew MELTON