Patents by Inventor James M. Griffith

James M. Griffith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5400789
    Abstract: A catheter for delivering both a probe and a balloon to a lumen in a subject. The probe is most preferably an ultrasonic imaging probe and the balloon a dilation balloon. The catheter comprises, at a proximal end, a triple lumen section that comprises a guidewire lumen, a probe lumen and a lumen for communicating with a balloon. As the lumens run toward the distal end of the catheter, a transition section is provided that merges the probe lumen and the guidewire lumen into a single lumen. The single lumen continues distally and is surrounded by the balloon. Distal of the balloon, the single lumen defines an imaging window section. The catheter terminates in a distal tip that is preferably tapered along both its inner and outer diameters; the tip comprises a distal lumen sized to accept a guidewire. In certain preferred embodiments, radio opaque markers are used to delineate the various sections of the catheter. Among its many advantages, the present invention readily permits back loading of a guidewire.
    Type: Grant
    Filed: April 11, 1994
    Date of Patent: March 28, 1995
    Inventor: James M. Griffith
  • Patent number: 5327885
    Abstract: A catheter for delivering both a probe and a balloon to a lumen in a subject. The probe is most preferably an ultrasonic imaging probe and the balloon a dilation balloon. The catheter comprises, at a proximal end, a triple lumen section that comprises a guidewire lumen, a probe lumen and a lumen for communicating with a balloon. As the lumens run toward the distal end of the catheter, a transition section is provided that merges the probe lumen and the guidewire lumen into a single lumen. The single lumen continues distally and is surrounded by the balloon. Distal of the balloon, the single lumen defines an imaging window section. The catheter terminates in a distal tip that is preferably tapered along both its inner and outer diameters; the tip comprises a distal lumen sized to accept a guidewire. In certain preferred embodiments, radio opaque markers are used to delineate the various sections of the catheter. Among its many advantages, the present invention readily permits back loading of a guidewire.
    Type: Grant
    Filed: February 16, 1993
    Date of Patent: July 12, 1994
    Inventor: James M. Griffith
  • Patent number: 5249580
    Abstract: An ultrasound imaging method for invasive imaging, in particular for imaging blood vessels including the coronary vessels. A sheath is comprised of three lumens; one serves as an ultrasound probe passage, one serves as a guide wire passage, and one serves as either a probe or a guide wire passage and is connected to the other two. Methods of using the sheath disclosed to obtain ultrasound images of a region within a subject are disclosed.
    Type: Grant
    Filed: January 29, 1993
    Date of Patent: October 5, 1993
    Inventor: James M. Griffith
  • Patent number: 5201315
    Abstract: An ultrasound imaging sheath for invasive imaging, in particular for imaging blood vessels including the coronary vessels. The sheath is comprised of three lumens; one serves as an ultrasound probe passage, one serves as a guide wire passage, and one serves as either a probe or a guide wire passage and is connected to the other two. Methods of using the sheath disclosed to obtain ultrasound images of a region within a subject are also disclosed.
    Type: Grant
    Filed: October 8, 1991
    Date of Patent: April 13, 1993
    Inventor: James M. Griffith
  • Patent number: 5115814
    Abstract: An intravascular ultrasonic imaging probe includes a transducer subassembly adapted to being rotated within a guide catheter via a drive cable. The guide catheter establishes a bearing surface for supporting the transducer subassembly during rotation while also mechanically isolating the rotating transducer subassembly from surrounding tissue (thereby protecting the tissue from inadvertent and/or undesired tissue abrasion by the subassembly during rotation). The catheter is positioned within a vessel to be imaged by telescopically advancing the same over a previously positioned guide wire, the guide wire being withdrawn after the guide catheter is positioned. Thereafter, the imaging probe is inserted into the guide catheter and operated so as to obtain ultrasonic images of the vessel under investigation.
    Type: Grant
    Filed: August 18, 1989
    Date of Patent: May 26, 1992
    Assignee: InterTherapy, Inc.
    Inventors: James M. Griffith, Paul J. Zalesky, James M. Gessert, Viet P. Dinh, James D. Passafaro
  • Patent number: 5010886
    Abstract: Intravascular probe assemblies are provided with both ultrasonic imaging and laser ablation (angioplasty) capabilities. In preferred embodiments, the probe assemblies will include a distally positioned rotatable housing having an ultrasonic transducer and an optical fiber operatively fixed therein so as to respectively emit acoustic energy and laser radiation along a common path generally parallel to the housing's axis, but in opposing axial directions. An optical and acoustic reflector is interposed between the transducer and optical fiber so as to redirect incident acoustic energy and laser radiation generally radially with respect to the housing.
    Type: Grant
    Filed: August 18, 1989
    Date of Patent: April 30, 1991
    Assignee: InterTherapy, Inc.
    Inventors: James D. Passafaro, James M. Griffith
  • Patent number: 4899757
    Abstract: An ultrasonic imaging probe includes a probe guide assembly, an ultrasonic transducer fixed to the distal end of the probe guide assembly, and electrical cabling housed within the probe guide assembly and operatively connected to the transducer for sending electrical pulse/signals to/from the transducer. The transducer is of a type which emits/receives ultrasonic waves along a path parallel to the elongate axis of the probe. The ultrasonic waves are directed radially of the probe by means of a reflector element which is distally spaced from the transducer along the probe's axis by a dimension sufficient to remove "dead space"(i.e., an area where ultrasonic imaging is not possible) radially of the catheter. An inductor coil (which tunes the transducer to the electrical cabling) is coaxially housed within the probe guide assembly closely adjacent the transducer and is electrically connected in series thereto.
    Type: Grant
    Filed: February 22, 1988
    Date of Patent: February 13, 1990
    Assignee: InterTherapy, Inc.
    Inventors: Joseph L. Pope, Jr., James M. Griffith, James M. Gessert, Mario Maciel, Paul Zalesky
  • Patent number: 4841977
    Abstract: An array of miniature ultrasound crystals mounted on preassembled subassembly which is, in turn, mounted on a small lumen catheter provides dimensional and other quantitative information relating to arterial wall geometry and character at disease or obstruction sites. Balloons also mounted to the catheter make it possible to use the catheter for the angioplasty (PCTA) procedure while actually imaging, in real time, the artery being dilatated and unblocked by the procedure. Efficient, highly miniature transducers are presented along with several different configurations for catheter structure containing fluid lumen, through-lumen, and electrical microcable assemblies for conducting electrical signals to and from the transducers.
    Type: Grant
    Filed: May 26, 1987
    Date of Patent: June 27, 1989
    Assignee: Inter Therapy, Inc.
    Inventors: James M. Griffith, Mario Maciel, Walter L. Henry, Paul J. Zalesky
  • Patent number: 4045815
    Abstract: A system for combining at least one analog signal, such as EKG signal, and an image signal, such as video signal representing a fluoroscopic view of a patient's heart or the like. The system includes a summing amplifier, which provides an input to a TV monitor and/or video recorder. The first input to the summing amplifier is provided from a TV camera arranged to view a physiological activity. A second input to the summing amplifier is provided from an encoder which receives one analog signal representing physiological data. The encoder includes an analog-to-digital (A/D) converter which receives the analog signal and feeds it to a random access memory (RAM). The A/D converter and the RAM are controlled by sync signals derived from a master camera control unit, which also provides sync signals to the TV camera.
    Type: Grant
    Filed: February 4, 1976
    Date of Patent: August 30, 1977
    Assignee: The United States of America as represented by the Secretary of the Department of Health, Education and Welfare
    Inventors: James M. Griffith, Walter L. Henry
  • Patent number: 4008713
    Abstract: An ultrasonic diagnostic technique utilized to determine the wall thickness of cardiac structures. In a preferred embodiment, the endocardial and epicardial surfaces of the left ventricular posterior wall are irradiated with an ultrasonic sound beam. The signal reflected at the epicardial-lung interface is much stronger than the signal from the surrounding myocardium and endocardial surface. In order to simultaneously visualize the endocardial and epicardial reflected signals, the echos received therefrom are processed through a switched gain receiver. That is, an oscillator rapidly switches the receiver gain between two levels that are independently set to display the two wall surfaces, the resultant echocardiogram displaying the high and low gain portions closely mixed whereby the wall thickness may be readily determined.
    Type: Grant
    Filed: September 18, 1975
    Date of Patent: February 22, 1977
    Assignee: The United States of America
    Inventors: James M. Griffith, Walter L. Henry