Patents by Inventor James M. Karlinsey

James M. Karlinsey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9050596
    Abstract: The present invention relates to microfluidic systems and methods for controlling the flow of fluid using passive components engineered into the microchannels. These passive flow components include fluidic diodes, fluidic capacitors, and fluidic inductors. Various fluidic circuits are provided to control fluid flow including fluid rectifiers, fluid band pass filters, and fluid timers.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: June 9, 2015
    Assignee: University of Virginia Patent Foundation
    Inventors: Christopher J. Easley, James M. Karlinsey, James P. Landers, Dan Leslie, Matthew R. Begley
  • Patent number: 8916375
    Abstract: The present invention provides an integrated microfluidic analysis system. The system contains at least a first (pre-reaction treatment) domain for treating a sample prior to subjecting the sample to a chemical reaction. The following domains are optionally added to the first domain: a second (reaction) domain for reacting the chemical of interest in the sample; and a third (post-reaction separation) domain for separating products and reactants coming out of the reaction domain. The integrated microfluidic analysis system of the present invention is most applicable to PCR analysis.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: December 23, 2014
    Assignee: University of Virginia Patent Foundation
    Inventors: James P. Landers, Joan Marie Bienvenue, Lindsay Ann Legendre, Christopher J. Easley, James M. Karlinsey
  • Publication number: 20120222747
    Abstract: The present invention relates to microfluidic systems and methods for controlling the flow of fluid using passive components engineered into the microchannels. These passive flow components include fluidic diodes, fluidic capacitors, and fluidic inductors. Various fluidic circuits are provided to control fluid flow including fluid rectifiers, fluid band pass filters, and fluid timers.
    Type: Application
    Filed: May 17, 2012
    Publication date: September 6, 2012
    Applicant: University of Virginia Patent Foundation
    Inventors: Christopher J. Easley, James M. Karlinsey, James P. Landers, Dan Leslie, Matthew R. Begley
  • Patent number: 8220493
    Abstract: The present invention relates to microfluidic systems and methods for controlling the flow of fluid using passive components engineered into the microchannels. These passive flow components include fluidic diodes, fluidic capacitors, and fluidic inductors. Various fluidic circuits are provided to control fluid flow including fluid rectifiers, fluid band pass filters, and fluid timers.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: July 17, 2012
    Assignee: University of Virginia Patent Foundation
    Inventors: Christopher J. Easley, James M. Karlinsey, James P. Landers, Dan Leslie, Matthew R. Begley
  • Publication number: 20090217993
    Abstract: The present invention relates to microfluidic systems and methods for controlling the flow of fluid using passive components engineered into the microchannels. These passive flow components include fluidic diodes, fluidic capacitors, and fluidic inductors. Various fluidic circuits are provided to control fluid flow including fluid rectifiers, fluid band pass filters, and fluid timers.
    Type: Application
    Filed: August 23, 2006
    Publication date: September 3, 2009
    Inventors: Christopher J. Easley, James M. Karlinsey, James P. Landers, Dan Leslie, Matthew R. Begley
  • Publication number: 20090170092
    Abstract: The present invention provides an integrated microfluidic analysis system. The system contains at least a first (pre-reaction treatment) domain for treating a sample prior to subjecting the sample to a chemical reaction. The following domains are optionally added to the first domain: a second (reaction) domain for reacting the chemical of interest in the sample; and a third (post-reaction separation) domain for separating products and reactants coming out of the reaction domain. The integrated microfluidic analysis system of the present invention is most applicable to PCR analysis.
    Type: Application
    Filed: October 12, 2006
    Publication date: July 2, 2009
    Inventors: James P. Landers, Joan Marie Bienvenue, Lindsay Ann Legendre, Christopher J. Easley, James M. Karlinsey