Patents by Inventor James M. Olsen

James M. Olsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11701513
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: July 18, 2023
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Michael T. Hegland, Gabriela C. Molnar, James M. Olsen
  • Patent number: 11612738
    Abstract: Conductors within an implantable medical lead that carry stimulation signal signals are at least partially embedded within a lead body of the medical lead over at least a portion of the length of the conductors while being surrounded by a radio frequency (RF) shield. A space between the shield and the conductors is filled by the presence of the lead body material such that body fluids that infiltrate the lead over time cannot pool in the space between the shield and the conductors. The dielectric properties of the lead body are retained and the capacitive coupling between the shield and the conductors continues to be inhibited such that current induced on the shield is inhibited from being channeled onto the conductors. Heating at the electrodes of the medical lead is prevented from becoming excessive.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: March 28, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Jamu K. Alford, Spencer Fodness Bondhus, Michael Kalm, James M. Olsen, Brian T. Stolz, Richard T. Stone, Bryan D. Stem, John D. Welter
  • Patent number: 11534607
    Abstract: A shield layer is added to an existing lead or lead extension by applying the shield layer to the lead body between the proximal contact and distal electrode of the lead body. The shield layer may be covered with an outer insulative layer. An inner insulative layer may be applied over the lead body prior to adding the shield layer and the outer insulative layer. The shield layer may have a terminator applied to the end of the shield layer to prevent migration of the shield layer through the outer insulative layer. The shield layer may be of various forms including a tubular braided wire structure or a tubular foil. The tubular braided wire structure may be applied to the lead body by utilizing the lead body as a mandrel within a braiding machine.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: December 27, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Bryan D. Stem, James M. Olsen
  • Patent number: 11458306
    Abstract: A shield located within an implantable medical lead may be terminated in various ways. The shield may be terminated by butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. For lap joints, a portion of an outer insulation layer may be removed and a replacement outer insulation layer is positioned in place of the removed outer insulation layer, where the replacement layer extends beyond an inner insulation layer and the shield. The replacement layer may also lap onto a portion of the insulation extension. The barbs may be located between the replacement layer and the inner insulation layer or the insulation extension. The shield wires have ends at the termination point that may be folded over individually or may be capped with a ring located within one of the insulation layers of the jacket.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: October 4, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Michael J. Kern, James M. Olsen, Michael R. Klardie, Richard T. Stone, Chad Q. Cai, Spencer Fodness-Bondhus, Mark J. Conroy, Timothy R. Abraham, Brian T. Stolz
  • Publication number: 20220143400
    Abstract: A shield located within an implantable medical lead may be terminated in various ways at a metal connector. The shield may be terminated by various joints including butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. The shield may terminate with a physical and electrical connection to a single metal connector. The shield may terminate with a physical and electrical connection by passing between an overlapping pair of inner and outer metal connectors. The metal connectors may include features such as teeth or threads that penetrate the insulation layers of the lead. The shield may terminate with a physical and electrical connection by exiting a jacket of a lead adjacent to a metal connector and lapping onto the metal connector.
    Type: Application
    Filed: December 14, 2021
    Publication date: May 12, 2022
    Inventors: Bruce R. Mehdizadeh, Brian T. Stolz, Michael Robert Klardie, James M. Olsen, Michael J. Kern, Richard T. Stone, Chad Q. Cai, Spencer Fodness-Bondhus, Mark J. Conroy, Timothy R. Abraham
  • Patent number: 11260222
    Abstract: Radiopaque markers represent that a lead is suitable for a particular medical procedure such as a magnetic resonance image scan and are added to the lead or related device. The markers may be added after implantation of the lead in various ways including suturing, gluing, crimping, or clamping a radiopaque tag to the lead or to the device. The markers may be added by placing a radiopaque coil about the lead, and the radiopaque coil may radially contract against the lead to obtain a fixed position. The markers may be added by placing a polymer structure onto the lead where the polymer structure includes a radiopaque marker within it. The polymer structure may include a cylindrical aperture that contracts against the lead to fix the position of the polymer structure. The polymer structure may form a lead anchor that includes suture wings that can be sutured to the lead.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: March 1, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: James M. Olsen, Michael R. Klardie, Richard T. Stone, Chad Q. Cai, Spencer Fodness-Bondhus, Mark J. Conroy, Timothy R. Abraham, Bruce R. Mehdizadeh, Michael J. Kern, Jay K. Lahti
  • Patent number: 11213677
    Abstract: A shield located within an implantable medical lead may be terminated in various ways at a metal connector. The shield may be terminated by various joints including butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. The shield may terminate with a physical and electrical connection to a single metal connector. The shield may terminate with a physical and electrical connection by passing between an overlapping pair of inner and outer metal connectors. The metal connectors may include features such as teeth or threads that penetrate the insulation layers of the lead. The shield may terminate with a physical and electrical connection by exiting a jacket of a lead adjacent to a metal connector and lapping onto the metal connector.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: January 4, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Bruce R. Mehdizadeh, Brian T. Stolz, Michael Robert Klardie, James M. Olsen, Michael J. Kern, Richard T. Stone, Chad Q. Cai, Spencer Fodness-Bondhus, Mark J. Conroy, Timothy R. Abraham
  • Publication number: 20200376260
    Abstract: Conductors within an implantable medical lead that carry stimulation signal signals are at least partially embedded within a lead body of the medical lead over at least a portion of the length of the conductors while being surrounded by a radio frequency (RF) shield. A space between the shield and the conductors is filled by the presence of the lead body material such that body fluids that infiltrate the lead over time cannot pool in the space between the shield and the conductors. The dielectric properties of the lead body are retained and the capacitive coupling between the shield and the conductors continues to be inhibited such that current induced on the shield is inhibited from being channeled onto the conductors. Heating at the electrodes of the medical lead is prevented from becoming excessive.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventors: Jamu K. Alford, Spencer Fodness Bondhus, Michael Kalm, James M. Olsen, Brian T. Stolz, Richard T. Stone, Bryan D. Stem, John D. Welter
  • Publication number: 20200282205
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 10, 2020
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Michael T. Hegland, Gabriela C. Molnar, James M. Olsen
  • Patent number: 10751525
    Abstract: Conductors within an implantable medical lead that carry stimulation signal signals are at least partially embedded within a lead body of the medical lead over at least a portion of the length of the conductors while being surrounded by a radio frequency (RF) shield. A space between the shield and the conductors is filled by the presence of the lead body material such that body fluids that infiltrate the lead over time cannot pool in the space between the shield and the conductors. The dielectric properties of the lead body are retained and the capacitive coupling between the shield and the conductors continues to be inhibited such that current induced on the shield is inhibited from being channeled onto the conductors. Heating at the electrodes of the medical lead is prevented from becoming excessive.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: August 25, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Jamu K. Alford, Spencer Fodness Bondhus, Michael Kalm, James M. Olsen, Brian T. Stolz, Richard T. Stone, Bryan D. Stem, John D. Welter
  • Publication number: 20200171298
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Application
    Filed: February 10, 2020
    Publication date: June 4, 2020
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Michael T. Hegland, Gabriela C. Molnar, James M. Olsen
  • Patent number: 10661074
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: May 26, 2020
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Michael T. Hegland, Gabriela C. Molnar, James M. Olsen
  • Publication number: 20200139111
    Abstract: Radiopaque markers represent that a lead is suitable for a particular medical procedure such as a magnetic resonance image scan and are added to the lead or related device. The markers may be added after implantation of the lead in various ways including suturing, gluing, crimping, or clamping a radiopaque tag to the lead or to the device. The markers may be added by placing a radiopaque coil about the lead, and the radiopaque coil may radially contract against the lead to obtain a fixed position. The markers may be added by placing a polymer structure onto the lead where the polymer structure includes a radiopaque marker within it. The polymer structure may include a cylindrical aperture that contracts against the lead to fix the position of the polymer structure. The polymer structure may form a lead anchor that includes suture wings that can be sutured to the lead.
    Type: Application
    Filed: December 19, 2019
    Publication date: May 7, 2020
    Inventors: James M. Olsen, Michael R. Klardie, Richard T. Stone, Chad Q. Cai, Spencer Fodness-Bondhus, Mark J. Conroy, Timothy R. Abraham, Bruce R. Mehdizadeh, Michael J. Kern, Jay K. Lahti
  • Patent number: 10617323
    Abstract: Changes in electrical stimulation therapy delivered via a medical device are coordinated with Functional Magnetic Resonance Imaging (fMRI) scans. In one example, a medical device delivers electrical stimulation therapy to a patient in an MRI unit, where the medical device is configured to cycle electrical stimulation therapy between a plurality of stimulation states. An indication that the medical device will cycle the electrical stimulation therapy or has cycled the electrical stimulation therapy while the patient is in the MRI unit or being imaged by the MRI unit is generated, and an MRI scan of the patient via an MRI workstation is initiated based on the indication. In another example, a medical device detects activation of an MRI scan and automatically switches stimulation states based upon the detection of the MRI scan, such that the scan is associated with a particular stimulation state.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: April 14, 2020
    Assignee: Medtronic, Inc.
    Inventors: James M. Olsen, Steven M. Goetz
  • Patent number: 10569080
    Abstract: Implantable medical leads and implantable lead extensions include a shield. The implantable medical lead is coupled to the implantable lead extension. Stimulation electrodes of the implantable medical lead contact stimulation connectors within a housing of the implantable extension to establish a conductive pathway for stimulation signals from filars of the implantable extension to filars of the implantable medical lead. Continuity is established between the shield of the implantable medical lead and the implantable extension by providing a radio frequency conductive pathway within the housing. The radio frequency conductive pathway extends from a shield of the implantable extension to a shield connector that contacts a shield electrode of the implantable medical lead. The radio frequency conductive pathway may have various forms such as a jumper wire or an extension of the shield within the implantable extension.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: February 25, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: James M. Olsen, Bruce R. Mehdizadeh, Michael J. Kern
  • Patent number: 10556103
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: February 11, 2020
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Michael T. Hegland, Gabriela C. Molnar, James M. Olsen
  • Patent number: 10556105
    Abstract: A shield located within an implantable medical lead may be terminated in various ways. The shield may be terminated by butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. For lap joints, a portion of an outer insulation layer may be removed and a replacement outer insulation layer is positioned in place of the removed outer insulation layer, where the replacement layer extends beyond an inner insulation layer and the shield. The replacement layer may also lap onto a portion of the insulation extension. Barbs may be located between the replacement layer and the inner insulation layer or the insulation extension. The shield wires have ends at the termination point that may be folded over individually or may be capped with a ring located within one of the insulation layers of the jacket.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: February 11, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Michael J. Kern, James M. Olsen, Michael R. Klardie, Richard T. Stone, Chad Q. Cai, Spencer Fodness-Bondhus, Mark J. Conroy, Timothy R. Abraham, Brian T. Stolz
  • Patent number: 10525263
    Abstract: Radiopaque markers represent that a lead is suitable for a particular medical procedure such as a magnetic resonance image scan and are added to the lead or related device. The markers may be added after implantation of the lead in various ways including suturing, gluing, crimping, or clamping a radiopaque tag to the lead or to the device. The markers may be added by placing a radiopaque coil about the lead, and the radiopaque coil may radially contract against the lead to obtain a fixed position. The markers may be added by placing a polymer structure onto the lead where the polymer structure includes a radiopaque marker within it. The polymer structure may include a cylindrical aperture that contracts against the lead to fix the position of the polymer structure. The polymer structure may form a lead anchor that includes suture wings that can be sutured to the lead.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: January 7, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: James M. Olsen, Michael R. Klardie, Richard T. Stone, Chad Q. Cai, Spencer Fodness-Bondhus, Mark J. Conroy, Timothy R. Abraham, Bruce R. Mehdizadeh, Michael J. Kern, Jay K. Lahti
  • Publication number: 20190336751
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Application
    Filed: July 19, 2019
    Publication date: November 7, 2019
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Michael T. Hegland, Gabriela C. Molnar, James M. Olsen
  • Patent number: 10463851
    Abstract: An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: November 5, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Piotr Przybyszewski, Carl D. Wahlstrand, Timothy J. Davis, Gregory A. Hrdlicka, James M. Olsen