Patents by Inventor James M. Sullivan

James M. Sullivan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11035826
    Abstract: The invention provides a signal processor that receives a signal containing information about an acoustic signal that is generated by at least one acoustic transmitter, that travels through an aerated fluid in a container, and that is received by at least one acoustic receiver arranged in relation to the container, including inside the container; and determines the gas volume fraction of the aerated fluid based at least partly on the speed of sound measurement of the acoustic signal that travels through the aerated fluid in the container. The signal processor also sends an output signal containing information about the gas volume fraction of the aerated fluid. The signal processor may be configured together with at least one acoustic transmitter, the at least one acoustic receiver, or both.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: June 15, 2021
    Assignee: CIDRA CORPORATE SERVICES, INC.
    Inventors: Mark R. Fernald, Timothy J. Bailey, Douglas H. Loose, James M. Sullivan, John Biesak, Alan D. Kersey, Michael A. Davis
  • Publication number: 20210172909
    Abstract: The invention provides a signal processor that receives a signal containing information about an acoustic signal that is generated by at least one acoustic transmitter, that travels through an aerated fluid in a container, and that is received by at least one acoustic receiver arranged in relation to the container, including inside the container; and determines the gas volume fraction of the aerated fluid based at least partly on the speed of sound measurement of the acoustic signal that travels through the aerated fluid in the container. The signal processor also sends an output signal containing information about the gas volume fraction of the aerated fluid. The signal processor may be configured together with at least one acoustic transmitter, the at least one acoustic receiver, or both.
    Type: Application
    Filed: January 8, 2021
    Publication date: June 10, 2021
    Inventors: Mark R. FERNALD, Timothy J. BAILEY, Douglas H. LOOSE, James M. SULLIVAN, John BIESAK, Alan D. KERSEY, Michael A. DAVIS
  • Patent number: 10606000
    Abstract: An optical waveguide feedthrough assembly passes at least one optical waveguide through a bulk head, a sensor wall, or other feedthrough member. The optical waveguide feedthrough assembly comprises a cane-based optical waveguide that forms a glass plug sealingly disposed in a feedthrough housing. For some embodiments, the optical waveguide includes a tapered surface biased against a seal seat formed in the housing. The feedthrough assembly can include an annular gold gasket member disposed between the tapered surface and the seal seat. The feedthrough assembly can further include a backup seal. The backup seal comprises an elastomeric annular member disposed between the glass plug and the housing. The backup seal may be energized by a fluid pressure in the housing. The feedthrough assembly is operable in high temperature and high pressure environments.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: March 31, 2020
    Assignee: WEATHERFORD TECHNOLOGY HOLDINGS, LLC
    Inventors: James R. Dunphy, John J. Sgambelluri, John J. Grunbeck, George J. Talmadge, Robert F. Robinson, James M. Sullivan, Joseph F. Robbins
  • Publication number: 20160334593
    Abstract: An optical waveguide feedthrough assembly passes at least one optical waveguide through a bulk head, a sensor wall, or other feedthrough member. The optical waveguide feedthrough assembly comprises a cane-based optical waveguide that forms a glass plug sealingly disposed in a feedthrough housing. For some embodiments, the optical waveguide includes a tapered surface biased against a seal seat formed in the housing. The feedthrough assembly can include an annular gold gasket member disposed between the tapered surface and the seal seat. The feedthrough assembly can further include a backup seal. The backup seal comprises an elastomeric annular member disposed between the glass plug and the housing. The backup seal may be energized by a fluid pressure in the housing. The feedthrough assembly is operable in high temperature and high pressure environments.
    Type: Application
    Filed: June 17, 2016
    Publication date: November 17, 2016
    Inventors: James R. DUNPHY, John J. SGAMBELLURI, John J. GRUNBECK, George J. TALMADGE, Robert F. ROBINSON, James M. SULLIVAN, Joseph F. ROBBINS
  • Patent number: 9423564
    Abstract: An optical waveguide feedthrough assembly passes at least one optical waveguide through a bulk head, a sensor wall, or other feedthrough member. The optical waveguide feedthrough assembly comprises a cane-based optical waveguide that forms a glass plug sealingly disposed in a feedthrough housing. For some embodiments, the optical waveguide includes a tapered surface biased against a seal seat formed in the housing. The feedthrough assembly can include an annular gold gasket member disposed between the tapered surface and the seal seat. The feedthrough assembly can further include a backup seal. The backup seal comprises an elastomeric annular member disposed between the glass plug and the housing. The backup seal may be energized by a fluid pressure in the housing. The feedthrough assembly is operable in high temperature and high pressure environments.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: August 23, 2016
    Assignee: WEATHERFORD TECHNOLOGY HOLDINGS, LLC
    Inventors: James R. Dunphy, John J. Sgambelluri, John Grunbeck, George Talmadge, Robert F. Robinson, James M. Sullivan, Joseph F. Robbins
  • Publication number: 20130192351
    Abstract: The invention provides a signal processor that receives a signal containing information about an acoustic signal that is generated by at least one acoustic transmitter, that travels through an aerated fluid in a container, and that is received by at least one acoustic receiver arranged in relation to the container, including inside the container; and determines the gas volume fraction of the aerated fluid based at least partly on the speed of sound measurement of the acoustic signal that travels through the aerated fluid in the container. The signal processor also sends an output signal containing information about the gas volume fraction of the aerated fluid. The signal processor may be configured together with at least one acoustic transmitter, the at least one acoustic receiver, or both.
    Type: Application
    Filed: March 9, 2011
    Publication date: August 1, 2013
    Applicant: CIDRA CORPORATE SERVICES INC.
    Inventors: Mark R. Fernald, Timothy J. Bailey, Douglas H. Loose, James M. Sullivan, John Biesak, Alan D. Kersey, Michael A. Davis
  • Patent number: 8422835
    Abstract: An optical waveguide feedthrough assembly passes at least one optical waveguide through a bulk head, a sensor wall, or other feedthrough member. The optical waveguide feedthrough assembly comprises a cane-based optical waveguide that forms a glass plug sealingly disposed in a feedthrough housing. For some embodiments, the optical waveguide includes a tapered surface biased against a seal seat formed in the housing. The feedthrough assembly can include an annular gold gasket member disposed between the tapered surface and the seal seat. The feedthrough assembly can further include a backup seal. The backup seal comprises an elastomeric annular member disposed between the glass plug and the housing. The backup seal may be energized by a fluid pressure in the housing. The feedthrough assembly is operable in high temperature and high pressure environments.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: April 16, 2013
    Assignee: Weatherford/Lamb, Inc.
    Inventors: James R. Dunphy, John J. Sgambelluri, John Grunbeck, George Talmadge, Robert F. Robinson, James M. Sullivan, Joseph F. Robbins
  • Publication number: 20130068027
    Abstract: A method for monitoring wall thickness of an industrial piping component or pump/fluid machinery, including a pump casing for a pump used for pumping an abrasive fluid or slurry, comprising providing a signal containing information about a ultrasonic-based transducer pulse from a discrete ultrasonic-based transducer attached directly on an industrial piping component or pump/fluid machinery at a local point of interest and configured to inject the ultrasonic-based transducer pulse into the industrial piping component or pump/fluid machinery at the local point of interest and sense the ultrasonic-based transducer pulse reflected off a wall of the industrial piping component or pump/fluid machinery at the local point of interest; and determining with an electronic monitoring system the thickness of the wall of the industrial piping component or pump/fluid machinery at the local point of interest based at least partly on the signal received containing information about the discrete ultrasonic-based transducer pu
    Type: Application
    Filed: March 18, 2011
    Publication date: March 21, 2013
    Applicant: CIDRA CORPORATE SERVICES INC.
    Inventors: James M. Sullivan, Mark R. Fernald
  • Patent number: 8382540
    Abstract: A method and apparatus for controlling the motion of a cable-driven autonomous moored profiler. The profiler includes one or more buoyant members for buoying the profiler in the fluid, a winch, and a feedback controller for controlling the winch. The winch includes a spool, a device providing for varying rates of turning of the spool, and a flexible cable for winding onto and unwinding from the spool. A first end of the cable is carried by the profiler. The controller monitors an indication of the tension in the cable and controls the device in response thereto.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: February 26, 2013
    Assignee: Wet Labs, Inc.
    Inventors: Andrew H. Barnard, Bruce K. Rhoades, John N. Koegler, III, Alex R. Derr, Casey Moore, Daniel R. Whiteman, Percy L. Donaghay, James M. Sullivan
  • Patent number: 8244088
    Abstract: A large diameter optical waveguide, grating, and laser includes a waveguide having at least one core surrounded by a cladding, the core propagating light in substantially a few transverse spatial modes; and having an outer waveguide dimension of said waveguide being greater than about 0.3 mm. At least one Bragg grating may be impressed in the waveguide. The waveguide may be axially compressed which causes the length of the waveguide to decrease without buckling. The waveguide may be used for any application where a waveguide needs to be compression tuned. Also, the waveguide exhibits lower mode coupling from the core to the cladding and allows for higher optical power to be used when writing gratings without damaging the waveguide. The waveguide may resemble a short “block” or a longer “cane” type, depending on the application and dimensions used.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: August 14, 2012
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Martin A. Putnam, Robert N. Brucato, Paul E. Sanders, Timothy J. Bailey, James M. Sullivan, Alan D. Kersey
  • Publication number: 20120082175
    Abstract: A large diameter optical waveguide, grating, and laser includes a waveguide having at least one core surrounded by a cladding, the core propagating light in substantially a few transverse spatial modes; and having an outer waveguide dimension of said waveguide being greater than about 0.3 mm. At least one Bragg grating may be impressed in the waveguide. The waveguide may be axially compressed which causes the length of the waveguide to decrease without buckling. The waveguide may be used for any application where a waveguide needs to be compression tuned. Also, the waveguide exhibits lower mode coupling from the core to the cladding and allows for higher optical power to be used when writing gratings without damaging the waveguide. The waveguide may resemble a short “block” or a longer “cane” type, depending on the application and dimensions used.
    Type: Application
    Filed: December 9, 2011
    Publication date: April 5, 2012
    Inventors: Martin A. Putnam, Robert N. Brucato, Paul E. Sanders, Timothy J. Bailey, James M. Sullivan, Alan D. Kersey
  • Patent number: 8111963
    Abstract: A large diameter optical waveguide, grating, and laser includes a waveguide having at least one core surrounded by a cladding, the core propagating light in substantially a few transverse spatial modes; and having an outer waveguide dimension of said waveguide being greater than about 0.3 mm. At least one Bragg grating may be impressed in the waveguide. The waveguide may be axially compressed which causes the length of the waveguide to decrease without buckling. The waveguide may be used for any application where a waveguide needs to be compression tuned. Also, the waveguide exhibits lower mode coupling from the core to the cladding and allows for higher optical power to be used when writing gratings without damaging the waveguide. The waveguide may resemble a short “block” or a longer “cane” type, depending on the application and dimensions used.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: February 7, 2012
    Assignee: Weatherford/LAMB, Inc.
    Inventors: Martin A. Putnam, Robert N. Brucato, Paul E. Sanders, Timothy J. Bailey, James M. Sullivan, Alan D. Kersey
  • Publication number: 20080317420
    Abstract: A large diameter optical waveguide, grating, and laser includes a waveguide having at least one core surrounded by a cladding, the core propagating light in substantially a few transverse spatial modes; and having an outer waveguide dimension of said waveguide being greater than about 0.3 mm. At least one Bragg grating may be impressed in the waveguide. The waveguide may be axially compressed which causes the length of the waveguide to decrease without buckling. The waveguide may be used for any application where a waveguide needs to be compression tuned. Also, the waveguide exhibits lower mode coupling from the core to the cladding and allows for higher optical power to be used when writing gratings without damaging the waveguide. The waveguide may resemble a short “block” or a longer “cane” type, depending on the application and dimensions used.
    Type: Application
    Filed: August 27, 2008
    Publication date: December 25, 2008
    Inventors: MARTIN A. PUTNAM, Robert N. Brucato, Paul E. Sanders, Timothy J. Bailey, James M. Sullivan, Alan D. Kersey
  • Patent number: 7447390
    Abstract: Optical sensors used in harsh environments require a sealed pressure tight passage of an optical waveguide into an interior of the sensor. In one embodiment, a pressure sensor assembly for determining the pressure of a fluid in a harsh environment includes a sensing element suspended within a fluid filled housing. An optical waveguide that provides communication with the sensing element couples to a feedthrough assembly, which includes a cane-based optical waveguide forming a glass plug sealingly disposed in the housing. The glass plug provides optical communication between the optical waveguide and the sensing element. A pressure transmitting device can transmit the pressure of the fluid to the fluid within the housing. The assembly can maintain the sensing element in a near zero base strain condition and can protect the sensing element from shock/vibration.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: November 4, 2008
    Assignee: Weatherford/Lamb, Inc.
    Inventors: James R. Dunphy, John J. Sgambelluri, John Grunbeck, George Talmadge, Robert F. Robinson, James M. Sullivan, Joseph F. Robbins
  • Patent number: 7437043
    Abstract: A large diameter optical waveguide, grating, and laser includes a waveguide 10 having at least one core 12 surrounded by a cladding 14, the core propagating light in substantially a few transverse spatial modes; and having an outer waveguide dimension d2 of said waveguide being greater than about 0.3 mm. At least one Bragg grating 16 may be impressed in the waveguide 10. The waveguide 10 may be axially compressed which causes the length L of the waveguide 10 to decrease without buckling. The waveguide 10 may be used for any application where a waveguide needs to be compression tuned, e.g., compression-tuned fiber gratings and lasers or other applications. Also, the waveguide 10 exhibits lower mode coupling from the core 12 to the cladding 14 and allows for higher optical power to be used when writing gratings 16 without damaging the waveguide 10. The shape of the waveguide 10 may have other geometries (e.g.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: October 14, 2008
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Martin A. Putnam, Robert N. Brucato, Paul E. Sanders, Timothy J. Bailey, James M. Sullivan, Alan D. Kersey
  • Patent number: 7062126
    Abstract: A tunable optical filter has a large diameter cane waveguide with “side-holes” in the cane cross-section that reduce the force required to compress the large diameter optical waveguide without overly compromising the buckling strength thereof. The large diameter optical waveguide has a cross-section of at least about 0.3 millimeters, including at least one inner core, a Bragg grating arranged therein, a cladding surrounding the inner core, and a structural configuration for providing a reduced bulk modulus of compressibility and maintaining the anti-buckling strength of the large diameter optical waveguide. The structural configuration reduces the cross-sectional area of the large diameter optical waveguide. These side holes reduce the amount of glass that needs to be compressed, but retains the large diameter.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: June 13, 2006
    Inventors: Alan D. Kersey, Mark R. Fernald, Timothy J. Bailey, Michael A. Davis, Thomas W. Engel, Robert N. Brucato, Richard T. Jones, Trevor W. MacDougall, Matthew B. Miller, Paul E. Sanders, James S. Sirkis, James M. Sullivan, Martin A. Putnam
  • Patent number: 6982996
    Abstract: A large diameter optical waveguide, grating, and laser includes a waveguide 10 having at least one core 12 surrounded by a cladding 14, the core propagating light in substantially a few transverse spatial modes; and having an outer waveguide dimension d2 of said waveguide being greater than about 0.3 mm. At least one Bragg grating 16 may be impressed in the waveguide 10. The waveguide 10 may be axially compressed which causes the length L of the waveguide 10 to decrease without buckling. The waveguide 10 may be used for any application where a waveguide needs to be compression tuned, e.g., compression-tuned fiber gratings and lasers or other applications. Also, the waveguide 10 exhibits lower mode coupling from the core 12 to the cladding 14 and allows for higher optical power to be used when writing gratings 16 without damaging the waveguide 10. The shape of the waveguide 10 may have other geometries (e.g.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: January 3, 2006
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Martin A. Putnam, Robert N. Brucato, Paul E. Sanders, Timothy J. Bailey, James M. Sullivan, Alan D. Kersey
  • Patent number: 6877041
    Abstract: A computer network includes one or more service computers configured to provide multiple network services via the network, and one or more connection devices that allow multiple network client computers to access the services via the network. The network also includes a single routing computer that serves as a firewall through which all traffic between the network services and the network client computers must pass.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: April 5, 2005
    Assignee: Omnes
    Inventors: James M. Sullivan, James A. Keddie
  • Patent number: 6865194
    Abstract: A strain-isolated bragg grating temperature sensor includes an optical sensing element 20,600 which includes an optical fiber 10 having at least one Bragg grating 12 disposed therein which is encased within and fused to at least a portion of a glass capillary tube 20 and/or a large diameter waveguide grating 600 having a core and a wide cladding and having the grating 12 disposed therein, which senses temperature changes but is substantially not sensitive to strains on the element caused by the fiber or other effects. Light 14 is incident on the grating 12 and light 16 is reflected at a reflection wavelength ?1. The shape of the sensing element 20,600 may be other geometries and/or more than one concentric tube may be used or more than one grating or pair of gratings may be used or more than one fiber or optical core may be used.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: March 8, 2005
    Assignee: CiDRA Corporation
    Inventors: Christopher J. Wright, Mark R. Fernald, Timothy J. Bailey, James M. Sullivan, James R. Dunphy, Michael A. Davis, Alan D. Kersey, Martin A. Putnam, Robert N. Brucato, Paul E. Sanders
  • Patent number: 6820489
    Abstract: A fiber grating pressure sensor includes an optical sensing element which includes an optical fiber having a Bragg grating impressed therein which is encased within and fused to at least a portion of a glass capillary tube and/or a large diameter waveguide grating having a core and a wide cladding. Light is incident on the grating and light is reflected from the grating at a reflection wavelength &lgr;1. The sensing element may be used by itself as a sensor or located within a housing. When external pressure P increases, the grating is compressed and the reflection wavelength &lgr;1 changes. The shape of the sensing element may have other geometries, e.g., a “dogbone” shape, so as to enhance the sensitivity of shift in &lgr;1 due to applied external pressure and may be fused to an outer shell.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: November 23, 2004
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, James R. Dunphy, Michael A. Davis, Christopher J. Wright, Alan D. Kersey, Martin A. Putnam, Robert N. Brucato, Paul E. Sanders