Patents by Inventor James M. Tour

James M. Tour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140367091
    Abstract: A wellbore fluid may include an oleaginous continuous phase, one or more magnetic carbon nanoribbons, and at least one weighting agent. A method of performing wellbore operations may include circulating a wellbore fluid comprising a magnetic carbon nanoribbon composition and a base fluid through a wellbore. A method for electrical logging of a subterranean well may include placing into the subterranean well a logging medium, wherein the logging medium comprises a non-aqueous fluid and one or more magnetic carbon nanoribbons, wherein the one or more magnetic carbon nanoribbons are present in a concentration so as to permit the electrical logging of the subterranean well; and acquiring an electrical log of the subterranean well.
    Type: Application
    Filed: January 28, 2013
    Publication date: December 18, 2014
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Bostjan Genorio, Wei Lu, Katherine Price Hoelscher, James Friedheim, Arvind D. Patel
  • Publication number: 20140313636
    Abstract: In some embodiments, the present invention provides methods of making graphene-carbon nanotube hybrid materials. In some embodiments, such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. In some embodiments, the grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In some embodiments, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. In some embodiments, the one or more junctions may include seven-membered carbon rings. Additional embodiments of the present invention pertain to graphene-carbon nanotube hybrid materials that are formed in accordance with the methods of the present invention.
    Type: Application
    Filed: November 19, 2012
    Publication date: October 23, 2014
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Yu Zhu, Lei Li, Zheng Yan, Jian Lin
  • Publication number: 20140220773
    Abstract: In some embodiments, the present disclosure pertains to methods of preparing graphene nanoribbons from a graphene film associated with a meniscus, where the method comprises patterning the graphene film while the meniscus acts as a mask above a region of the graphene film, and where the patterning results in formation of graphene nanoribbons from the meniscus-masked region of the graphene film. Additional embodiments of the present disclosure pertain to methods of preparing wires from a film associated with a meniscus, where the method comprises patterning the film while the meniscus acts as a mask above a region of the film, and where the patterning results in formation of a wire from the meniscus-masked region of the film. Additional embodiments of the present disclosure pertain to chemical methods of preparing wires from water-reactive materials.
    Type: Application
    Filed: February 3, 2014
    Publication date: August 7, 2014
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Vera Abramova, Alexander Slesarev
  • Patent number: 8784866
    Abstract: Compositions comprising a plurality of functionalized carbon nanotubes and at least one type of payload molecule are provided herein. The compositions are soluble in water and PBS in some embodiments. In certain embodiments, the payload molecules are insoluble in water. Methods are described for making the compositions and administering the compositions. An extended release formulation for paclitaxel utilizing functionalized carbon nanotubes is also described.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: July 22, 2014
    Assignees: William Marsh Rice University, Board of Regents, The University of Texas System
    Inventors: James M. Tour, Rebecca Lucente-Schultz, Ashley Leonard, Dmitry V. Kosynkin, Brandi Katherine Price, Jared L. Hudson, Jodie L. Conyers, Jr., Valerie C. Moore, S. Ward Casscells, Jeffrey N. Myers, Zvonimir L. Milas, Kathy A. Mason, Luka Milas
  • Publication number: 20140178688
    Abstract: In some embodiments, the present disclosure pertains to methods of controllably forming Bernal-stacked graphene layers. In some embodiments, the methods comprise: (1) cleaning a surface of a catalyst; (2) annealing the surface of the catalyst; (3) applying a carbon source onto the cleaned and annealed surface of the catalyst in a reaction chamber; and (4) growing the Bernal-stacked graphene layers on the surface of the catalyst in the reaction chamber, where the number of formed Bernal-stacked graphene layers is controllable as a function of one or more growth parameters. Further embodiments of the present disclosure also include steps of: (5) terminating the growing step; and (6) transferring the formed Bernal-stacked graphene layers from the surface of the catalyst onto a substrate. Further embodiments of the present disclosure pertain to graphene films formed by the methods of the present disclosure.
    Type: Application
    Filed: December 12, 2013
    Publication date: June 26, 2014
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Zhengzong Sun, Abdul-Rahman O. Raji
  • Publication number: 20140154269
    Abstract: In some embodiments, the invention pertains to therapeutic compositions for treating a brain tumor. Such therapeutic compositions generally comprise: (1) a nanovector; (2) an active agent associated with the nanovector with activity against brain tumor cells; and (3) a targeting agent associated with the nanovector with recognition activity for a marker of the brain tumor cells. In some embodiments, the active agent and the targeting agent are non-covalently associated with the nanovector. Additional embodiments of the present invention pertain to methods of treating a brain tumor in a subject (e.g., a human being) by administering the aforementioned therapeutic compositions to the subject. Further embodiments of the present disclosure pertain to methods of formulating therapeutic compositions for treating a brain tumor in a subject in a personalized manner.
    Type: Application
    Filed: April 26, 2012
    Publication date: June 5, 2014
    Applicants: The Methodist Hospital Research Institute, William Marsh Rice University
    Inventors: James M. Tour, Jacob Berlin, Daniela Marcano, David S. Baskin, Martyn A. Sharpe
  • Publication number: 20140120024
    Abstract: Methods for producing macroscopic quantities of oxidized graphene nanoribbons are disclosed herein. The methods include providing a plurality of carbon nanotubes and reacting the plurality of carbon nanotubes with at least one oxidant to form oxidized graphene nanoribbons. The at least one oxidant is operable to longitudinally open the carbon nanotubes. In some embodiments, the reacting step takes place in the presence of at least one acid. In some embodiments, the reacting step takes place in the presence of at least one protective agent. Various embodiments of the present disclosure also include methods for producing reduced graphene nanoribbons by reacting oxidized graphene nanoribbons with at least one reducing agent. Oxidized graphene nanoribbons, reduced graphene nanoribbons and compositions and articles derived therefrom are also disclosed herein.
    Type: Application
    Filed: January 6, 2014
    Publication date: May 1, 2014
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James M. Tour, Dmitry V. Kosynkin, Amanda Dugue, Brandi Katherine Price-Hoelscher
  • Publication number: 20140120270
    Abstract: The present invention provides methods of forming graphene films on various non-catalyst surfaces by applying a carbon source and a catalyst to the surface and initiating graphene film formation. In some embodiments, graphene film formation may be initiated by induction heating. In some embodiments, the carbon source is applied to the non-catalyst surface before the catalyst is applied to the surface. In other embodiments, the catalyst is applied to the non-catalyst surface before the carbon source is applied to the surface. In further embodiments, the catalyst and the carbon source are applied to the non-catalyst surface at the same time. Further embodiments of the present invention may also include a step of separating the catalyst from the formed graphene film, such as by acid etching.
    Type: Application
    Filed: September 9, 2011
    Publication date: May 1, 2014
    Inventors: James M. Tour, Zheng Yan, Zhiwei Peng, Zhengzong Sun
  • Publication number: 20140120081
    Abstract: In some embodiments, the present invention provides methods of treating oxidative stress in a subject by administering a therapeutic composition to the subject. In some embodiments, the therapeutic composition comprises a carbon nanomaterial with anti-oxidant activity. In some embodiments, the anti-oxidant activity of the carbon nanomaterial corresponds to ORAC values between about 200 to about 15,000. In some embodiments, the administered carbon nanomaterials include at least one of single-walled nanotubes, double-walled nanotubes, triple-walled nanotubes, multi-walled nanotubes, ultra-short nanotubes, graphene, graphene nanoribbons, graphite, graphite oxide nanoribbons, carbon black, oxidized carbon black, hydrophilic carbon clusters, and combinations thereof. In some embodiments, the carbon nanomaterial is an ultra-short single-walled nanotube that is functionalized with a plurality of solubilizing groups.
    Type: Application
    Filed: April 26, 2012
    Publication date: May 1, 2014
    Applicants: Baylor College of Medicine, William Marsh Rice University
    Inventors: James M. Tour, Jacob Berlin, Daniela Marcano, Ashley Leonard, Thomas A. Kent, Robia G. Pautler, Brittany Bitner, Taeko Inoue
  • Patent number: 8703090
    Abstract: Methods for producing macroscopic quantities of oxidized graphene nanoribbons are disclosed herein. The methods include providing a plurality of carbon nanotubes and reacting the plurality of carbon nanotubes with at least one oxidant to form oxidized graphene nanoribbons. The at least one oxidant is operable to longitudinally open the carbon nanotubes. In some embodiments, the reacting step takes place in the presence of at least one acid. In some embodiments, the reacting step takes place in the presence of at least one protective agent. Various embodiments of the present disclosure also include methods for producing reduced graphene nanoribbons by reacting oxidized graphene nanoribbons with at least one reducing agent. Oxidized graphene nanoribbons, reduced graphene nanoribbons and compositions and articles derived therefrom are also disclosed herein.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: April 22, 2014
    Assignee: William Marsh Rice University
    Inventors: James M. Tour, Dmitry V. Kosynkin, Amanda Higginbotham, Brandi Katherine Price
  • Publication number: 20140081067
    Abstract: Various aspects of the present invention pertain to methods of sorption of various materials from an environment, including radioactive elements, chlorates, perchlorates, organohalogens, and combinations thereof. Such methods generally include associating graphene oxides with the environment. This in turn leads to the sorption of the materials to the graphene oxides. In some embodiments, the methods of the present invention also include a step of separating the graphene oxides from the environment after the sorption of the materials to the graphene oxides. More specific aspects of the present invention pertain to methods of sorption of radionuclides (such as actinides) from a solution by associating graphene oxides with the solution and optionally separating the graphene oxides from the solution after the sorption.
    Type: Application
    Filed: February 27, 2012
    Publication date: March 20, 2014
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James M. Tour, Alexander Slesarev, Dmitry V. Kosynkin, Anna Y. Romanchuk, Stepan N. Kalmykov
  • Publication number: 20140076158
    Abstract: Composite materials for carbon dioxide (C02) capture that include: (1) a mesoporous carbon source; and (2) an in situ polymerized polymer that is associated with the mesoporous carbon source, where the in situ polymerized polymer is selected from the group consisting of thiol-based polymers, amine-based polymers, and combinations thereof. Methods of making the composite materials for C02 capture include: (1) associating a mesoporous carbon source with monomers, where the monomers are selected from the group consisting of thiol-based monomers, amine-based monomers, and combinations thereof; and (2) polymerizing the monomers in situ to form said composite materials. Further embodiments of the present invention pertain to methods of capturing C02 from an environment by associating the environment with one or more of the aforementioned composite materials.
    Type: Application
    Filed: October 25, 2011
    Publication date: March 20, 2014
    Applicants: Nalco Company, William Marsh Rice University
    Inventors: James M. Tour, Garry Chih-Chau Hwang, Jay R. Lomeda
  • Publication number: 20140048748
    Abstract: In some embodiments, the present invention provides graphene nanoribbon composites that include a polymer matrix and graphene nanoribbons that are dispersed in the polymer matrix. In more specific embodiments, the polymer matrix of the composite is an epoxy matrix, and the graphene nanoribbons of the composite include functionalized graphene nanoribbons. In further embodiments, the composites of the present invention further comprise metals, such as tin, copper, gold, silver, aluminum and combinations thereof. Additional embodiments of the present invention pertain to methods of making the graphene nanoribbon composites of the present invention. In some embodiments, such methods include mixing graphene nanoribbons with polymer precursors to form a mixture, and then curing the mixture to form the composite.
    Type: Application
    Filed: February 13, 2012
    Publication date: February 20, 2014
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Yu Zhu, Abdul-Rahman O. Raji
  • Publication number: 20140048799
    Abstract: An optically transparent memory device comprises first and second electrodes, wherein the electrodes are formed from conductive material(s) that is transparent. The memory device also provides a resistive memory layer coupled to the first and second electrodes. The resistive memory layer is formed from a resistive memory material providing resistive switching that is transparent. Additionally, the optically transparent memory device may be incorporated into a variety of electronics.
    Type: Application
    Filed: February 16, 2012
    Publication date: February 20, 2014
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Jun Yao
  • Publication number: 20140036576
    Abstract: In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.
    Type: Application
    Filed: October 10, 2013
    Publication date: February 6, 2014
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Jun Yao, Douglas Natelson, Lin Zhong, Tao He
  • Publication number: 20140014030
    Abstract: In some embodiments, the present disclosure pertains to methods of forming single-crystal graphenes by: (1) cleaning a surface of a catalyst; (2) annealing the surface of the catalyst; (3) applying a carbon source to the surface of the catalyst; and (4) growing single-crystal graphene on the surface of the catalyst from the carbon source. Further embodiments of the present disclosure also include a step of separating the formed single-crystal graphene from the surface of the catalyst. In some embodiments, the methods of the present disclosure also include a step of transferring the formed single-crystal graphene to a substrate. Additional embodiments of the present disclosure also include a step of growing stacks of single crystals of graphene.
    Type: Application
    Filed: July 10, 2013
    Publication date: January 16, 2014
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Zheng Yan
  • Publication number: 20130319973
    Abstract: The present invention provides methods of selectively removing one or more graphene layers from a graphene material by: (1) applying a metal to a surface of the graphene material; and (2) applying a hydrogen containing solution to the surface of the graphene material that is associated with the metal. The hydrogen containing solution dissolves the metal along with one or more layers of graphene associated with the metal, thereby removing the layer(s) of graphene from the graphene material. In some embodiments, the hydrogen containing solution is an acidic solution, such as hydrochloric acid. In some embodiments, the metal is zinc. In some embodiments, the methods of the present invention are utilized to selectively remove one or more layers of graphene from one or more targeted sites on the surface of a graphene material.
    Type: Application
    Filed: October 11, 2011
    Publication date: December 5, 2013
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Ayrat M. Dimiev, Dmitry V. Kosynkin
  • Patent number: 8592791
    Abstract: In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: November 26, 2013
    Assignee: William Marsh Rice University
    Inventors: James M. Tour, Jun Yao, Douglas Natelson, Lin Zhong, Tao He
  • Patent number: 8562935
    Abstract: The present invention is directed towards methods (processes) of providing large quantities of carbon nanotubes (CNTs) of defined diameter and chirality (i.e., precise populations). In such processes, CNT seeds of a pre-selected diameter and chirality are grown to many (e.g., hundreds) times their original length. This is optionally followed by cycling some of the newly grown material back as seed material for regrowth. Thus, the present invention provides for the large-scale production of precise populations of CNTs, the precise composition of such populations capable of being optimized for a particular application (e.g., hydrogen storage). The present invention is also directed to complexes of CNTs and transition metal catalyst precurors, such complexes typically being formed en route to forming CNT seeds.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: October 22, 2013
    Assignee: William Marsh Rice University
    Inventors: Robert H. Hauge, Andrew R. Barron, James M. Tour, Howard K. Schmidt, W. Edward Billups, Christopher A. Dyke, Valerie C. Moore, Elizabeth Whitsitt, Robin E. Anderson, Ramon Colorado, Jr., Michael P. Stewart, Douglas C. Ogrin, Irene M. Marek
  • Publication number: 20130264536
    Abstract: Various embodiments of the present invention pertain to memresistor cells that comprise: (1) a substrate; (2) an electrical switch associated with the substrate; (3) an insulating layer; and (3) a resistive memory material. The resistive memory material is selected from the group consisting of SiOx, SiOxH, SiOxNy, SiOxNyH, SiOxCz, SiOxCzH, and combinations thereof, wherein each of x, y and z are equal or greater than 1 or equal or less than 2. Additional embodiments of the present invention pertain to memresistor arrays that comprise: (1) a plurality of bit lines; (2) a plurality of word lines orthogonal to the bit lines; and (3) a plurality of said memresistor cells positioned between the word lines and the bit lines. Further embodiments of the present invention provide methods of making said memresistor cells and arrays.
    Type: Application
    Filed: September 8, 2011
    Publication date: October 10, 2013
    Applicants: Privatran, Inc., William Marsh Rice University
    Inventors: James M. Tour, Jun Yao, Burt Fowler, Glenn Mortland