Patents by Inventor James Michael Krause
James Michael Krause has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10725124Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.Type: GrantFiled: March 5, 2018Date of Patent: July 28, 2020Assignee: LOCKHEED MARTIN CORPORATIONInventors: Brian P. Boesch, Gregory Scott Bruce, Jeff D. Cammerata, David Nelson Coar, Laird Nicholas Egan, Bryan Neal Fisk, Wilbur Lew, Arul Manickam, Stephen Michael Sekelsky, John B. Stetson, Jr., Peter G. Kaup, Julie Lynne Miller, Jon C. Russo, Emanuel Solomon Stockman, Thomas J. Meyer, James Michael Krause, James P. Mabry, Elton Pepa
-
Patent number: 10677953Abstract: A system for magnetic detection includes a magneto-optical defect center material including at least one magneto-optical defect center that emits an optical signal when excited by an excitation light; a radio frequency (RF) exciter system configured to provide RF excitation to the magneto-optical defect center material; an optical light source configured to direct the excitation light to the magneto-optical defect center material; and an optical detector configured to receive the optical signal emitted by the magneto-optical defect center material.Type: GrantFiled: May 31, 2017Date of Patent: June 9, 2020Assignee: LOCKHEED MARTIN CORPORATIONInventors: John B. Stetson, Arul Manickam, Peter G. Kaup, Gregory Scott Bruce, Wilbur Lew, Joseph W. Hahn, Nicholas Mauriello Luzod, Kenneth Michael Jackson, Jacob Louis Swett, Peter V. Bedworth, Steven W. Sinton, Duc Huynh, Michael John Dimario, Jay T. Hansen, Andrew Raymond Mandeville, Bryan Neal Fisk, Joseph A. Villani, Jon C. Russo, David Nelson Coar, Julie Lynne Miller, Anjaney Pramod Kottapalli, Gary Edward Montgomery, Margaret Miller Shaw, Stephen Sekelsky, James Michael Krause, Thomas J. Meyer
-
Patent number: 10277208Abstract: A magnetic waveform generator circuit includes a first switch coupled to a first rectifier element at a first node, a first capacitor coupled, at a second node to the first switch, and to a fourth node, a second capacitor coupled, at a third node to the first rectifier element, and to the fourth node, and an inductor coupled between the first and the fourth nodes. The first switch is operable to be in an ON state during a first time period and in an off state during a second time period. The first switch and the first rectifier element are configured to enable the inductor to generate, during the first and the second time periods, a magnetic field having a waveform resembling a positive half-cycle of a triangular waveform.Type: GrantFiled: March 6, 2017Date of Patent: April 30, 2019Assignee: LOCKHEED MARTIN CORPORATIONInventors: James Michael Krause, James P. Mabry, Elton Pepa
-
Patent number: 9910105Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.Type: GrantFiled: June 10, 2016Date of Patent: March 6, 2018Assignee: LOCKHEED MARTIN CORPORATIONInventors: Brian P. Boesch, Gregory Scott Bruce, Jeff D. Cammerata, David Nelson Coar, Laird Nicholas Egan, Bryan Neal Fisk, Wilbur Lew, Arul Manickam, Stephen Michael Sekelsky, John B. Stetson, Jr., Peter G. Kaup, Julie Lynne Miller, Jon C. Russo, Emanuel Solomon Stockman, Thomas J. Meyer, James Michael Krause, James P. Mabry, Elton Pepa
-
Patent number: 9853837Abstract: A magnetic communications transmitter includes a magnetic field generator and a controller. The magnetic field generator is configured to generate a magnetic field. The controller is configured to control the magnetic field generator by controlling an electrical current supplied to the magnetic field generator, and causing the magnetic field generator to generate an optimized variable amplitude triangular waveform.Type: GrantFiled: April 1, 2015Date of Patent: December 26, 2017Assignee: Lockheed Martin CorporationInventors: James Michael Krause, Arul Manickam
-
Patent number: 9590601Abstract: A magnetic waveform generator circuit includes a first switch coupled to a first rectifier element at a first node, a first capacitor coupled, at a second node to the first switch, and to a fourth node, a second capacitor coupled, at a third node to the first rectifier element, and to the fourth node, and an inductor coupled between the first and the fourth nodes. The first switch is operable to be in an ON state during a first time period and in an off state during a second time period. The first switch and the first rectifier element are configured to enable the inductor to generate, during the first and the second time periods, a magnetic field having a waveform resembling a positive half-cycle of a triangular waveform.Type: GrantFiled: April 7, 2015Date of Patent: March 7, 2017Assignee: LOCKHEED MARTIN CORPORATIONInventors: James Michael Krause, James P. Mabry, Elton Pepa
-
Patent number: 9329270Abstract: An illumination assembly includes a laser for producing a laser beam of light and an optical fiber disposed adjacent the laser and extending between a beam receiving end for receiving the laser beam of light from the laser and a beam emitting end for emitting the laser beam of light therefrom. A beam splitter splits the laser beam into a target beam and a feedback beam and directs the target beam toward the targeted object. A feedback sensor receives the feedback beam and generates a feedback signal to identify a targeted image portion correlated to the targeted object. A motor is operatively connected to the vehicle with the beam emitting end fixedly secured thereto. A controller receives the feedback signal generated by the feedback sensor and generates a control signal transmittable to the motor to position the beam emitting end of the optical fiber such that the target beam continues to be directed toward the targeted object.Type: GrantFiled: September 17, 2013Date of Patent: May 3, 2016Assignee: Lockheed Martin CorporationInventors: James Michael Krause, Norman August Lehtomaki, Bing C. Li, Gregory J. Whaley
-
Publication number: 20150077558Abstract: An illumination assembly includes a laser for producing a laser beam of light and an optical fiber disposed adjacent the laser and extending between a beam receiving end for receiving the laser beam of light from the laser and a beam emitting end for emitting the laser beam of light therefrom. A beam splitter splits the laser beam into a target beam and a feedback beam and directs the target beam toward the targeted object. A feedback sensor receives the feedback beam and generates a feedback signal to identify a targeted image portion correlated to the targeted object. A motor is operatively connected to the vehicle with the beam emitting end fixedly secured thereto. A controller receives the feedback signal generated by the feedback sensor and generates a control signal transmittable to the motor to position the beam emitting end of the optical fiber such that the target beam continues to be directed toward the targeted object.Type: ApplicationFiled: September 17, 2013Publication date: March 19, 2015Applicant: Lockheed Martin CorporationInventors: James Michael Krause, Norman August Lehtomaki, Bing C. Li, Gregory J. Whaley