Patents by Inventor JAMES MITCHELL FRIX
JAMES MITCHELL FRIX has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9717448Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary embodiment of a continuous transdermal monitoring system comprises a sensor package. The sensor package may include a pulse oximetry sensor having a plurality of light detectors arranged as an array. One exemplary method for continuous transdermal monitoring begins by positioning a pulse oximetry sensor system, similar to the system described immediately above, adjacent to a target tissue segment. Then, the method continues by detecting a light reflected by the target tissue segment. Then, the method continues by transmitting a pulse oximetry reading(s), based at least in part on the light reflected by the target tissue segment, of the target tissue segment. Then, the method continues by analyzing the pulse oximetry reading(s).Type: GrantFiled: April 19, 2016Date of Patent: August 1, 2017Inventors: James Tyler Frix, Andrew Johnson, James Mitchell Frix, Robert Andrew Taylor
-
Patent number: 9717464Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.Type: GrantFiled: April 18, 2016Date of Patent: August 1, 2017Inventors: James Tyler Frix, Andrew Johnson, James Mitchell Frix, Robert Andrew Taylor
-
Publication number: 20160228044Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary embodiment of a continuous transdermal monitoring system comprises a sensor package. The sensor package may include a pulse oximetry sensor having a plurality of light detectors arranged as an array. One exemplary method for continuous transdermal monitoring begins by positioning a pulse oximetry sensor system, similar to the system described immediately above, adjacent to a target tissue segment. Then, the method continues by detecting a light reflected by the target tissue segment. Then, the method continues by transmitting a pulse oximetry reading(s), based at least in part on the light reflected by the target tissue segment, of the target tissue segment. Then, the method continues by analyzing the pulse oximetry reading(s).Type: ApplicationFiled: April 19, 2016Publication date: August 11, 2016Inventors: JAMES TYLER FRIX, ANDREW JOHNSON, JAMES MITCHELL FRIX, ROBERT ANDREW TAYLOR
-
Publication number: 20160228065Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.Type: ApplicationFiled: April 18, 2016Publication date: August 11, 2016Inventors: JAMES TYLER FRIX, ANDREW JOHNSON, JAMES MITCHELL FRIX, ROBERT ANDREW TAYLOR
-
Patent number: 9339236Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary embodiment of a continuous transdermal monitoring system comprises a sensor package. The sensor package may include a pulse oximetry sensor having a plurality of light detectors arranged as an array. One exemplary method for continuous transdermal monitoring begins by positioning a pulse oximetry sensor system, similar to the system described immediately above, adjacent to a target tissue segment. Then, the method continues by detecting a light reflected by the target tissue segment. Then, the method continues by transmitting a pulse oximetry reading(s), based at least in part on the light reflected by the target tissue segment, of the target tissue segment. Then, the method continues by analyzing the pulse oximetry reading(s).Type: GrantFiled: December 9, 2014Date of Patent: May 17, 2016Inventors: James Tyler Frix, Andrew Johnson, James Mitchell Frix, Robert Andrew Taylor
-
Patent number: 9339237Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.Type: GrantFiled: July 9, 2015Date of Patent: May 17, 2016Inventors: James Tyler Frix, Andrew Johnson, James Mitchell Frix, Robert Andrew Taylor
-
Publication number: 20150305683Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.Type: ApplicationFiled: July 9, 2015Publication date: October 29, 2015Inventors: JAMES TYLER FRIX, ANDREW JOHNSON, JAMES MITCHELL FRIX, ROBERT ANDREW TAYLOR
-
Patent number: 9107644Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.Type: GrantFiled: July 7, 2014Date of Patent: August 18, 2015Inventors: James Tyler Frix, Andrew Johnson, James Mitchell Frix, Robert Andrew Taylor
-
Publication number: 20150094551Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary embodiment of a continuous transdermal monitoring system comprises a sensor package. The sensor package may include a pulse oximetry sensor having a plurality of light detectors arranged as an array. One exemplary method for continuous transdermal monitoring begins by positioning a pulse oximetry sensor system, similar to the system described immediately above, adjacent to a target tissue segment. Then, the method continues by detecting a light reflected by the target tissue segment. Then, the method continues by transmitting a pulse oximetry reading(s), based at least in part on the light reflected by the target tissue segment, of the target tissue segment. Then, the method continues by analyzing the pulse oximetry reading(s).Type: ApplicationFiled: December 9, 2014Publication date: April 2, 2015Inventors: JAMES TYLER FRIX, ANDREW JOHNSON, JAMES MITCHELL FRIX, ROBERT ANDREW TAYLOR
-
Publication number: 20150011854Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.Type: ApplicationFiled: July 7, 2014Publication date: January 8, 2015Inventors: JAMES TYLER FRIX, ANDREW JOHNSON, JAMES MITCHELL FRIX, ROBERT ANDREW TAYLOR