Patents by Inventor James Mosby

James Mosby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11230773
    Abstract: Molten salt electrolytes are described for use in electrochemical synthesis of hydrocarbons from carboxylic acids. The molten salt electrolyte can be used to synthesize a wide variety of hydrocarbons with and without functional groups that have a broad range of applications. The molten salt can be used to synthesize saturated hydrocarbons, diols, alkylated aromatic compounds, as well as other types of hydrocarbons. The molten salt electrolyte increases the selectivity, yield, the energy efficiency and Coulombic efficiency of the electrochemical conversion of carboxylic acids to hydrocarbons while reducing the cell potential required to perform the oxidation.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: January 25, 2022
    Assignee: ENLIGHTEN INNOVATIONS INC.
    Inventors: James Mosby, Sai Bhavaraju
  • Patent number: 10968525
    Abstract: A method for converting carboxylic acids (including carboxylic acids derived from biomass) into hydrocarbons. The produced hydrocarbons will generally have at least two oxygen containing substituents (or other substituents). In one example of application, the electrolysis converts alkali salts of carboxylic acids into diols which can then be used as solvents or be dehydrated to produce dienes, which can then be used to produce elastic polymeric materials. This process allows custom synthesis of high value chemicals from renewable feed stocks such as carboxylic acids derived from biomass.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: April 6, 2021
    Assignee: ENLIGHTEN INNOVATIONS INC.
    Inventors: James Mosby, Sai Bhavaraju
  • Publication number: 20190218672
    Abstract: Molten salt electrolytes are described for use in electrochemical synthesis of hydrocarbons from carboxylic acids. The molten salt electrolyte can be used to synthesize a wide variety of hydrocarbons with and without functional groups that have a broad range of applications. The molten salt can be used to synthesize saturated hydrocarbons, diols, alkylated aromatic compounds, as well as other types of hydrocarbons. The molten salt electrolyte increases the selectivity, yield, the energy efficiency and Coulombic efficiency of the electrochemical conversion of carboxylic acids to hydrocarbons while reducing the cell potential required to perform the oxidation.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 18, 2019
    Inventors: James MOSBY, Sai Bhavaraju
  • Publication number: 20190100843
    Abstract: A method for converting carboxylic acids (including carboxylic acids derived from biomass) into hydrocarbons. The produced hydrocarbons will generally have at least two oxygen containing substituents (or other substituents). In one example of application, the electrolysis converts alkali salts of carboxylic acids into diols which can then be used as solvents or be dehydrated to produce dienes, which can then be used to produce elastic polymeric materials. This process allows custom synthesis of high value chemicals from renewable feed stocks such as carboxylic acids derived from biomass.
    Type: Application
    Filed: April 30, 2018
    Publication date: April 4, 2019
    Inventors: James MOSBY, Sai BHAVARAJU, Mukund KARANJIKAR
  • Patent number: 10145019
    Abstract: Methods, equipment, and reagents for preparing organic compounds using custom electrolytes based on different ionic liquids in electrolytic decarboxylation reactions are disclosed.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: December 4, 2018
    Assignee: ENLIGHTEN INNOVATIONS INC.
    Inventors: Sai Bhavaraju, James Mosby, Patrick McGuire, Mukund Karanjikar, Daniel Taggart, Jacob Staley
  • Patent number: 9957622
    Abstract: A method for converting carboxylic acids (including carboxylic acids derived from biomass) into hydrocarbons. The produced hydrocarbons will generally have at least two oxygen containing substituents (or other substituents). In one example of application, the electrolysis converts alkali salts of carboxylic acids into diols which can then be used as solvents or be dehydrated to produce dienes, which can then be used to produce elastic polymeric materials. This process allows custom synthesis of high value chemicals from renewable feed stocks such as carboxylic acids derived from biomass.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: May 1, 2018
    Assignee: FIELD UPGRADING LIMITED
    Inventors: James Mosby, Sai Bhavaraju, Mukund Karanjikar
  • Patent number: 9689078
    Abstract: A NaSICON cell is used to convert carbon dioxide into a usable, valuable product. In general, this reaction occurs at the cathode where electrons are used to reduce the carbon dioxide, in the presence of water and/or hydrogen gas, to form formate, methane, ethylene, other hydrocarbons and/or other chemicals. The particular chemical that is formed depends upon the reaction conditions, the voltage applied, etc.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: June 27, 2017
    Assignee: CERAMATEC, INC.
    Inventors: Sai Bhavaraju, James Mosby
  • Publication number: 20170088962
    Abstract: Methods, equipment, and reagents for preparing organic compounds using custom electrolytes based on different ionic liquids in electrolytic decarboxylation reactions are disclosed.
    Type: Application
    Filed: October 11, 2016
    Publication date: March 30, 2017
    Inventors: Sai Bhavaraju, James Mosby, Patrick McGuire, Mukund Karanjikar, Daniel Taggart, Jacob Staley
  • Patent number: 9493882
    Abstract: Methods, equipment, and reagents for preparing organic compounds using custom electrolytes based on different ionic liquids in electrolytic decarboxylation reactions are disclosed.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: November 15, 2016
    Assignee: CERAMATEC, INC.
    Inventors: Sai Bhavaraju, James Mosby, Patrick McGuire, Mukund Karanjikar, Daniel Taggart, Jacob Staley
  • Publication number: 20150083606
    Abstract: Molten salt electrolytes are described for use in electrochemical synthesis of hydrocarbons from carboxylic acids. The molten salt electrolyte can be used to synthesize a wide variety of hydrocarbons with and without functional groups that have a broad range of applications. The molten salt can be used to synthesize saturated hydrocarbons, diols, alkylated aromatic compounds, as well as other types of hydrocarbons. The molten salt electrolyte increases the selectivity, yield, the energy efficiency and Coulombic efficiency of the electrochemical conversion of carboxylic acids to hydrocarbons while reducing the cell potential required to perform the oxidation.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 26, 2015
    Inventors: James Mosby, Sai Bhavaraju
  • Publication number: 20140251821
    Abstract: Methods, equipment, and reagents for preparing organic compounds using custom electrolytes based on different ionic liquids in electrolytic decarboxylation reactions are disclosed.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 11, 2014
    Applicant: Ceramatec, Inc.
    Inventors: Sai Bhavaraju, James Mosby, Patrick McGuire, Mukund Karanjikar, Daniel Taggart, Jacob Staley
  • Publication number: 20140251822
    Abstract: A NaSICON cell is used to convert carbon dioxide into a usable, valuable product. In general, this reaction occurs at the cathode where electrons are used to reduce the carbon dioxide, in the presence of water and/or hydrogen gas, to form formate, methane, ethylene, other hydrocarbons and/or other chemicals. The particular chemical that is formed depends upon the reaction conditions, the voltage applied, etc.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 11, 2014
    Applicant: Ceramatec, Inc.
    Inventors: Sai Bhavaraju, James Mosby
  • Publication number: 20130245347
    Abstract: A method for alkylating aromatic compounds is described using an electrochemical decarboxylation process. This process produces aryl-alkyl compounds that have properties useful in Group V lubricants (and other products) from abundant and economical carboxylic acids. The process presented here is also advantageous as it is conducted at moderate temperatures and conditions, without the need of a catalyst. The electrochemical decarboxylation has only H2 and CO2 as its by-products, as opposed to halide by-products.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 19, 2013
    Applicant: CERAMATEC, INC.
    Inventors: James Mosby, Patrick McGuire, Sai Bhavaraju, Mukund Karanjikar