Patents by Inventor James Munroe

James Munroe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11381167
    Abstract: A converter circuit includes a power stage circuit configured to convert an input voltage received by an inductor to an output voltage provided at an output; a control circuit configured to generate input pulses to control the power stage circuit; a slope compensation circuit configured to provide a compensation signal to the control circuit for overcoming a sub-harmonic oscillation in the converter circuit, wherein the control circuit is configured to generate the input pulses based at least in part on the compensation signal; a slope compensation adjustment circuit configured to determine a rate of change of a current at the inductor and to provide a slope compensation adjustment signal based on the determined rate of change; and a modulation circuit configured to modulate the compensation signal with the slope compensation adjustment signal to produce the adjusted slope compensation signal.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: July 5, 2022
    Assignee: Texas Instruments Incorporated
    Inventor: Michael James Munroe
  • Publication number: 20200161975
    Abstract: A converter circuit includes a power stage circuit configured to convert an input voltage received by an inductor to an output voltage provided at an output; a control circuit configured to generate input pulses to control the power stage circuit; a slope compensation circuit configured to provide a compensation signal to the control circuit for overcoming a sub-harmonic oscillation in the converter circuit, wherein the control circuit is configured to generate the input pulses based at least in part on the compensation signal; a slope compensation adjustment circuit configured to determine a rate of change of a current at the inductor and to provide a slope compensation adjustment signal based on the determined rate of change; and a modulation circuit configured to modulate the compensation signal with the slope compensation adjustment signal to produce the adjusted slope compensation signal.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Inventor: Michael James Munroe
  • Patent number: 10578654
    Abstract: A device for averaging a sensed current includes a sampling circuit that samples at least two sampling points of each cycle of a front-end alternating current (AC) sensed signal. The two sampling points is substantially symmetrical with respect to a midpoint of each respective cycle of the front-end AC sensed signal. The device also includes a timing circuit that controls a timing of the sampling circuit to sample the front-end AC sensed signal on the at least two sampling points based on a timing signal generated by the timing circuit. The device further includes an averaging circuit that averages the two sampling points for a given cycle of the front-end AC sensed signal to produce an average sensed current.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: March 3, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Siyuan Zhou, Michael James Munroe, Stephen Isaac Brink
  • Patent number: 10581325
    Abstract: A converter circuit includes a power stage circuit configured to convert an input voltage received by an inductor to an output voltage provided at an output; a control circuit configured to generate input pulses to control the power stage circuit; a slope compensation circuit configured to provide a compensation signal to the control circuit for overcoming a sub-harmonic oscillation in the converter circuit, wherein the control circuit is configured to generate the input pulses based at least in part on the compensation signal; a slope compensation adjustment circuit configured to determine a rate of change of a current at the inductor and to provide a slope compensation adjustment signal based on the determined rate of change; and a modulation circuit configured to modulate the compensation signal with the slope compensation adjustment signal to produce the adjusted slope compensation signal.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: March 3, 2020
    Assignee: Texas Instruments Incorporated
    Inventor: Michael James Munroe
  • Patent number: 10481193
    Abstract: A programmable load transient circuit includes a switchable power device for coupling a DUT output to its non-control node in series with a current sense device. A feedback loop is between the current sense device and the power device's control node that includes an integrator including an amplifier coupled to receive a signal that is a function of an average load current (IDavg) supplied by the DUT from the current sense device and to receive a reference voltage (Vref). The integrator provides an output drive voltage that is coupled to an input of a level shifter which receives a pulse signal or DC level at another of its inputs. The level shifter provides an output waveform or DC voltage to the power device's control node that is a function of IDavg.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: November 19, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Daniel Alexander Katz, Michael James Munroe
  • Publication number: 20190242937
    Abstract: A programmable load transient circuit includes a switchable power device for coupling a DUT output to its non-control node in series with a current sense device. A feedback loop is between the current sense device and the power device's control node that includes an integrator including an amplifier coupled to receive a signal that is a function of an average load current (IDavg) supplied by the DUT from the current sense device and to receive a reference voltage (Vref). The integrator provides an output drive voltage that is coupled to an input of a level shifter which receives a pulse signal or DC level at another of its inputs. The level shifter provides an output waveform or DC voltage to the power device's control node that is a function of IDavg.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 8, 2019
    Inventors: DANIEL ALEXANDER KATZ, MICHAEL JAMES MUNROE
  • Publication number: 20190204366
    Abstract: A device for averaging a sensed current includes a sampling circuit that samples at least two sampling points of each cycle of a front-end alternating current (AC) sensed signal. The two sampling points is substantially symmetrical with respect to a midpoint of each respective cycle of the front-end AC sensed signal. The device also includes a timing circuit that controls a timing of the sampling circuit to sample the front-end AC sensed signal on the at least two sampling points based on a timing signal generated by the timing circuit. The device further includes an averaging circuit that averages the two sampling points for a given cycle of the front-end AC sensed signal to produce an average sensed current.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Siyuan Zhou, Michael James Munroe, Stephen Isaac Brink
  • Publication number: 20180278160
    Abstract: An integrated circuit having at least one electrically-controlled control loop that includes one or more loop error amplifiers also includes an analog-to-digital converter having both an input that operably couples to two inputs of each loop error amplifier and an output that couples to an off-chip hardware component comprising a control circuit. This control circuit reads digital versions that correspond to the loop error amplifier inputs. When a particular first input is greater than a second input, the control circuit sources a calibration signal to modify and offset for the loop error amplifier in a first direction. When the first input is less than the second input, the control circuit sources a calibration signal to modify the offset for the loop error amplifier in a second direction that is different from the aforementioned first direction. By one approach the control circuit also controls a sampling rate of the analog-to-digital converter.
    Type: Application
    Filed: March 21, 2018
    Publication date: September 27, 2018
    Inventors: Michael James Munroe, Stephen Isaac Brink
  • Patent number: 9371253
    Abstract: This invention relates to high purity yttria or ytterbia stabilized zirconia powders comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of verticalzA macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: June 21, 2016
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Thomas Alan Taylor, Danny Lee Appleby, Albert Feuerstein, Ann Bolcavage, Neil Hitchman, James Munroe
  • Publication number: 20140334939
    Abstract: This invention relates to high purity yttria or ytterbia stabilized zirconia powders comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of verticalzA macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Application
    Filed: November 1, 2013
    Publication date: November 13, 2014
    Applicant: PRAXAIR S.T. TECHNOLOGY, INC.
    Inventors: Thomas Alan TAYLOR, Danny Lee APPLEBY, Albert FEUERSTEIN, Ann BOLCAVAGE, Neil HITCHMAN, James MUNROE
  • Patent number: 8728967
    Abstract: This invention relates to high purity yttria or ytterbia stabilized zirconia powders comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: May 20, 2014
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Thomas Alan Taylor, Danny Lee Appleby, Albert Feuerstein, Ann Bolcavage, Neil Hitchman, James Munroe
  • Publication number: 20120122651
    Abstract: This invention relates to high purity yttria or ytterbia stabilized zirconia powders comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Application
    Filed: April 27, 2007
    Publication date: May 17, 2012
    Inventors: Thomas Alan Taylor, Danny Lee Appleby, Albert Feuerstein, Ann Bolcavage, Neil Hitchman, James Munroe
  • Patent number: 6102427
    Abstract: A binding lifter for a ski includes a fastener retention layer, a lifter core extension above and below the fastener retention layer and an exterior layer over at least a portion of the lifter core. The fastener retention layer has a greater density than the lifter core. Binding fasteners are securable to the fastener retention layer.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: August 15, 2000
    Assignee: K-2 Corporation
    Inventors: Anthony O. DeRocco, Joe D. Shride, James A. Munroe, Bard Glenne