Patents by Inventor James N. O'Brien

James N. O'Brien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8723075
    Abstract: Laser machining fired ceramic and other hard and/or thick materials includes scribing a workpiece with a laser beam along a sequence of parallel laser paths within a cutout region of the workpiece. The scribing creates a kerf in the cutout region that widens as the laser beam advances along the sequence. The sequence may begin with an inner portion of the cutout region and end with an outer edge thereof such that debris is directed away from the laser paths to increase throughput and create a high quality opening in the workpiece. High quality structures may also be cut out from the workpiece. The method includes directing a high velocity stream of gas to an interlace of the laser beam and the workpiece to redirect the flow of debris and cool the interface. The method may also adjust a focus depth of the laser beam as it deepens the kerf.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: May 13, 2014
    Assignee: Electro Scientific Industries, Inc.
    Inventors: James N. O'Brien, Peter Y. Pirogovsky, Michael S. Nashner
  • Publication number: 20120132629
    Abstract: Methods and apparatuses for reducing taper of a laser scribe in a substrate are described. One method includes aiming a laser beam at a surface of the substrate in a first direction perpendicular to a first cutting direction of the beam and aiming it at the surface in a second direction perpendicular to the first cutting direction. In each position, the laser beam is tilted at a beam tilt angle with respect to a line perpendicular to the surface. A single scribe line is formed in the surface by applying the laser beam to the surface while aiming the laser beam in the first direction and cutting in the first cutting direction and applying the laser beam to the surface while aiming the laser beam in the second direction and cutting in one of the first cutting direction and a second cutting direction opposite the first cutting direction.
    Type: Application
    Filed: November 30, 2010
    Publication date: May 31, 2012
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: James N. O'Brien, Joseph G. Frankel
  • Publication number: 20120103953
    Abstract: Laser machining fired ceramic and other hard and/or thick materials includes scribing a workpiece with a laser beam along a sequence of parallel laser paths within a cutout region of the workpiece. The scribing creates a kerf in the cutout region that widens as the laser beam advances along the sequence. The sequence may begin with an inner portion of the cutout region and end with an outer edge thereof such that debris is directed away from the laser paths to increase throughput and create a high quality opening in the workpiece. High quality structures may also be cut out from the workpiece. The method includes directing a high velocity stream of gas to an interlace of the laser beam and the workpiece to redirect the flow of debris and cool the interface. The method may also adjust a focus depth of the laser beam as it deepens the kerf.
    Type: Application
    Filed: December 14, 2011
    Publication date: May 3, 2012
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: James N. O'Brien, Peter Y. Pirogovsky, Michael S. Nashner
  • Patent number: 8093532
    Abstract: Laser machining fired ceramic and other hard and/or thick materials includes scribing a workpiece with a laser beam along a sequence of parallel laser paths within a cutout region of the workpiece. The scribing creates a kerf in the cutout region that widens as the laser beam advances along the sequence. The sequence may begin with an inner portion of the cutout region and end with an outer edge thereof such that debris is directed away from the laser paths to increase throughput and create a high quality opening in the workpiece. High quality structures may also be cut out from the workpiece. The method includes directing a high velocity stream of gas to an interface of the laser beam and the workpiece to redirect the flow of debris and cool the interface. The method may also adjust a focus depth of the laser beam as it deepens the kerf.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: January 10, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: James N. O'Brien, Peter Y. Pirogovsky, Michael S. Nashner
  • Patent number: 7977213
    Abstract: A solution to failure mechanisms caused by mechanical sawing of a mechanical semiconductor workpiece entails use of a laser beam to cut and remove the electrically conductive and low-k dielectric material layers from a dicing street before saw dicing to separate semiconductor devices. A laser beam forms a laser scribe region such as a channel in the electrically conductive and low-k dielectric material layers, the bottom of the channel ending on a laser energy transparent stop layer of silicon oxide lying below all of the electrically conductive and low-k dielectric material layers. The disclosed process entails selection of laser parameters such as wavelength, pulse width, and fluence that cooperate to leave the silicon oxide layer stop layer completely or nearly undamaged. A mechanical saw cuts the silicon oxide layer and all other material layers below it, as well as the substrate, to separate the semiconductor devices.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 12, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Andy E. Hooper, David Barsic, Clint R. Vandergiessen, Haibin Zhang, James N. O'Brien
  • Publication number: 20090242525
    Abstract: Laser machining fired ceramic and other hard and/or thick materials includes scribing a workpiece with a laser beam along a sequence of parallel laser paths within a cutout region of the workpiece. The scribing creates a kerf in the cutout region that widens as the laser beam advances along the sequence. The sequence may begin with an inner portion of the cutout region and end with an outer edge thereof such that debris is directed away from the laser paths to increase throughput and create a high quality opening in the workpiece. High quality structures may also be cut out from the workpiece. The method includes directing a high velocity stream of gas to an interface of the laser beam and the workpiece to redirect the flow of debris and cool the interface. The method may also adjust a focus depth of the laser beam as it deepens the kerf.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: James N. O'Brien, Peter Y. Pirogovsky, Michael S. Nashner
  • Publication number: 20070272666
    Abstract: Systems and methods are provided for scribing wafers to efficiently ablate passivation and/or encapsulation layers while reducing or eliminating chipping and cracking in the passivation and/or encapsulation layers. Short laser pulses are used to provide high peak powers and reduce the ablation threshold. In one embodiment, the scribing is performed by a q-switched CO2 laser.
    Type: Application
    Filed: May 25, 2006
    Publication date: November 29, 2007
    Inventors: James N. O'Brien, Peter Pirogovsky
  • Patent number: 6676878
    Abstract: UV laser cutting throughput through silicon and like materials is improved by dividing a long cut path (112) into short segments (122), from about 10 &mgr;m to 1 mm. The laser output (32) is scanned within a first short segment (122) for a predetermined number of passes before being moved to and scanned within a second short segment (122) for a predetermined number of passes. The bite size, segment size (126), and segment overlap (136) can be manipulated to minimize the amount and type of trench backfill. Real-time monitoring is employed to reduce rescanning portions of the cut path 112 where the cut is already completed. Polarization direction of the laser output (32) is also correlated with the cutting direction to further enhance throughput. This technique can be employed to cut a variety of materials with a variety of different lasers and wavelengths.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: January 13, 2004
    Assignee: Electro Scientific Industries, Inc.
    Inventors: James N. O'Brien, Lian-Cheng Zou, Yunlong Sun
  • Publication number: 20020190435
    Abstract: UV laser cutting throughput through silicon and like materials is improved by dividing a long cut path (112) into short segments (122), from about 10 &mgr;m to 1 mm. The laser output (32) is scanned within a first short segment (122) for a predetermined number of passes before being moved to and scanned within a second short segment (122) for a predetermined number of passes. The bite size, segment size (126), and segment overlap (136) can be manipulated to minimize the amount and type of trench backfill. Real-time monitoring is employed to reduce rescanning portions of the cut path 112 where the cut is already completed. Polarization direction of the laser output (32) is also correlated with the cutting direction to further enhance throughput. This technique can be employed to cut a variety of materials with a variety of different lasers and wavelengths.
    Type: Application
    Filed: June 6, 2002
    Publication date: December 19, 2002
    Inventors: James N. O'Brien, Lian-Cheng Zou, Yunlong Sun
  • Patent number: 5593606
    Abstract: The output of a continuously pumped, Q-switched, Nd:YAG laser (10) is frequency converted to provide ultraviolet light (62) for forming vias (72, 74) in multi-layered targets (40). The parameters of the output pulses (62) are selected to facilitate substantially clean, simultaneous or sequential drilling or via formation in a wide variety of materials such as metals, organic dielectrics, and reinforcement materials having different thermal absorption characteristics in response to ultraviolet light. These parameters typically include at least two of the following criteria: high average power of greater than about 100 milliwatts measured over the beam spot area, a temporal pulse width shorter than about 100 nanoseconds, a spot diameter of less than about 50 microns, and a repetition rate of greater than about one kilohertz.
    Type: Grant
    Filed: July 18, 1994
    Date of Patent: January 14, 1997
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Mark D. Owen, James N. O'Brien
  • Patent number: RE43400
    Abstract: UV laser cutting throughput through silicon and like materials is improved by dividing a long cut path (112) into short segments (122), from about 10 ?m to 1 mm. The laser output (32) is scanned within a first short segment (122) for a predetermined number of passes before being moved to and scanned within a second short segment (122) for a predetermined number of passes. The bite size, segment size (126), and segment overlap (136) can be manipulated to minimize the amount and type of trench backfill. Real-time monitoring is employed to reduce rescanning portions of the cut path 112 (112) where the cut is already completed. Polarization direction of the laser output (32) is also correlated with the cutting direction to further enhance throughput. This technique can be employed to cut a variety of materials with a variety of different lasers and wavelengths. A multi-step process can optimize the laser processes for each individual layer.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: May 22, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: James N. O'Brien, Lian-Cheng Zou, Yunlong Sun, Kevin P. Fahey, Michael J. Wolfe, Brian W. Baird, Richard S. Harris
  • Patent number: RE43487
    Abstract: UV laser cutting throughput through silicon and like materials is improved by dividing a long cut path (112) into short segments (122), from about 10 ?m to 1 mm. The laser output (32) is scanned within a first short segment (122) for a predetermined number of passes before being moved to and scanned within a second short segment (122) for a predetermined number of passes. The bite size, segment size (126), and segment overlap (136) can be manipulated to minimize the amount and type of trench backfill. Real-time monitoring is employed to reduce rescanning portions of the cut path 112 (112) where the cut is already completed. Polarization direction of the laser output (32) is also correlated with the cutting direction to further enhance throughput. This technique can be employed to cut a variety of materials with a variety of different lasers and wavelengths. A multi-step process can optimize the laser processes for each individual layer.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: June 26, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: James N. O'Brien, Lian-Cheng Zou, Yunlong Sun, Kevin P. Fahey, Michael J. Wolfe, Brian W. Baird, Richard S. Harris
  • Patent number: RE43605
    Abstract: UV laser cutting throughput through silicon and like materials is improved by dividing a long cut path (112) into short segments (122), from about 10 ?m to 1 mm. The laser output (32) is scanned within a first short segment (122) for a predetermined number of passes before being moved to and scanned within a second short segment (122) for a predetermined number of passes. The bite size, segment size (126), and segment overlap (136) can be manipulated to minimize the amount and type of trench backfill. Real-time monitoring is employed to reduce rescanning portions of the cut path 112 (112) where the cut is already completed. Polarization direction of the laser output (32) is also correlated with the cutting direction to further enhance throughput. This technique can be employed to cut a variety of materials with a variety of different lasers and wavelengths. A multi-step process can optimize the laser processes for each individual layer.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: August 28, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: James N. O'Brien, Lian-Cheng Zou, Yunlong Sun, Kevin P. Fahey, Michael J. Wolfe, Brian W. Baird, Richard S. Harris