Patents by Inventor James Naden
James Naden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9742592Abstract: Interference is processed in a waveform received at a device in a wireless network, the received interference comprising non-linear products of at least a first signal (C1) at a first carrier frequency and a second signal (C2) at a second carrier frequency. A complex composite baseband signal is generated comprising at least the first and second signal at baseband, occupying a respective first and second frequency range within a composite baseband frequency range and not overlapping in frequency. The complex composite baseband signal is processed by applying at least a first non-linear function (74a) to generate simulated interference comprising at least one simulated non-linear product. The received interference is then processed in dependence on the simulated interference.Type: GrantFiled: January 22, 2016Date of Patent: August 22, 2017Assignee: ACEAXIS LIMITEDInventors: David Bevan, James Naden, Simon Gale, Fiona Wilson
-
Patent number: 9693364Abstract: Interference in a data stream carrying a plurality of uplink signals received in a wireless network is processed, the interference comprising a non-linear product (I3) of at least one downlink signal (C1) of the wireless network. The data stream carrying the plurality of uplink signals and at least a first data stream carrying a plurality of downlink signals is received, and data representing signals received at a first uplink carrier frequency is selected from the data stream carrying the plurality of uplink signals. Data representing signals at at least a first downlink carrier frequency is selected from at least the first data stream carrying the plurality of downlink signals. Interference is detected in the selected data representing signals received at the first uplink carrier frequency by correlation with a synthesized product generated from at least data representing signals at the first downlink carrier frequency.Type: GrantFiled: May 27, 2015Date of Patent: June 27, 2017Assignee: ACEAXIS LIMITEDInventors: Simon Gale, David Bevan, Fiona Wilson, James Naden
-
Publication number: 20160142229Abstract: Interference is processed in a waveform received at a device in a wireless network, the received interference comprising non-linear products of at least a first signal (C1) at a first carrier frequency and a second signal (C2) at a second carrier frequency. A complex composite baseband signal is generated comprising at least the first and second signal at baseband, occupying a respective first and second frequency range within a composite baseband frequency range and not overlapping in frequency. The complex composite baseband signal is processed by applying at least a first non-linear function (74a) to generate simulated interference comprising at least one simulated non-linear product. The received interference is then processed in dependence on the simulated interference.Type: ApplicationFiled: January 22, 2016Publication date: May 19, 2016Inventors: David BEVAN, James NADEN, Simon GALE, Fiona WILSON
-
Publication number: 20150257165Abstract: Interference in a data stream carrying a plurality of uplink signals received in a wireless network is processed, the interference comprising a non-linear product (I3) of at least one downlink signal (C1) of the wireless network. The data stream carrying the plurality of uplink signals and at least a first data stream carrying a plurality of downlink signals is received, and data representing signals received at a first uplink carrier frequency is selected from the data stream carrying the plurality of uplink signals. Data representing signals at at least a first downlink carrier frequency is selected from at least the first data stream carrying the plurality of downlink signals. Interference is detected in the selected data representing signals received at the first uplink carrier frequency by correlation with a synthesized product generated from at least data representing signals at the first downlink carrier frequency.Type: ApplicationFiled: May 27, 2015Publication date: September 10, 2015Inventors: Simon GALE, David BEVAN, Fiona WILSON, James NADEN
-
Patent number: 9049156Abstract: A wireless network includes a base station which can serve terminals directly, or via multi-hop transmission paths via relay stations. The base station transmits a downlink sub-frame which includes a first set of frame control information and a second set of frame control information. The second set of frame control information occupies a different position within the downlink sub-frame compared to the first set of frame control information. A relay station is able to transmit a downlink sub-frame to a terminal, or another relay station, while still being able to receive a set of frame control at a different time during the downlink sub-frame. The invention is especially useful in a wireless network in which the downlink transmissions of a base station and a relay station are synchronized to one another and where the downlink transmissions of a base station and relay station occupy the same, or similar, frequency bearer.Type: GrantFiled: July 17, 2013Date of Patent: June 2, 2015Assignee: Apple Inc.Inventors: James Naden, Gamini Senarath, David Steer
-
Patent number: 8917650Abstract: A wireless network includes a base station which can serve terminals directly, or via multi-hop transmission paths via relay stations. The base station transmits a downlink sub-frame which includes a first set of frame control information and a second set of frame control information. The second set of frame control information occupies a different position within the downlink sub-frame compared to the first set of frame control information. A relay station is able to transmit a downlink sub-frame to a terminal, or another relay station, while still being able to receive a set of frame control at a different time during the downlink sub-frame. The invention is especially useful in a wireless network in which the downlink transmissions of a base station and a relay station are synchronized to one another and where the downlink transmissions of a base station and relay station occupy the same, or similar, frequency bearer.Type: GrantFiled: October 23, 2007Date of Patent: December 23, 2014Assignee: Apple Inc.Inventors: James Naden, Gamini Senarath, David Steer
-
Publication number: 20140050126Abstract: A wireless network includes a base station which can serve terminals directly, or via multi-hop transmission paths via relay stations. The base station transmits a downlink sub-frame which includes a first set of frame control information and a second set of frame control information. The second set of frame control information occupies a different position within the downlink sub-frame compared to the first set of frame control information. A relay station is able to transmit a downlink sub-frame to a terminal, or another relay station, while still being able to receive a set of frame control at a different time during the downlink sub-frame. The invention is especially useful in a wireless network in which the downlink transmissions of a base station and a relay station are synchronized to one another and where the downlink transmissions of a base station and relay station occupy the same, or similar, frequency bearer.Type: ApplicationFiled: July 17, 2013Publication date: February 20, 2014Inventors: James Naden, Gamini Senarath, David Steer
-
Publication number: 20130064076Abstract: Some embodiments of the invention provide an implementation for a multi-hop wireless backhaul network. These embodiments can advantageously be deployed in dense urban areas and/or co-located with wireless access nodes, such as base-stations of a cellular wireless communication system. Preferably wireless links between constituent network nodes are set-up hierarchically. A basic result of this is that peer-to-peer (child-to-child) communication is generally prohibited and circuits are forced to conform to a topology. The multi-hop wireless backhaul network may be used to carry delay sensitive, high-density last mile circuit traffic over Non-Line-Of-Sight (NLOS) broadband radio links. Moreover, some embodiments of the invention provide a method of path-healing for re-routing of circuit traffic from circuits that have experienced catastrophic failures.Type: ApplicationFiled: September 14, 2012Publication date: March 14, 2013Inventors: Shalini Periyalwar, Hang Zhang, Glenn Algie, Peiying Zhu, Robert Matyas, Claude Royer, Bill Gage, James Naden, Alauddin Javed
-
Publication number: 20120202416Abstract: A base station in a wireless communications system defines a plurality of beams which each have an amount of resources for supporting communication links with terminals. A control entity determines if a direct communication link can be supported between a new terminal and a base station using a first beam. If a direct communication link cannot be supported, a relaying equipment is used to provide a multi-hop path between the base station and the terminal. The multi-hop path comprises a link between the base station and the relaying equipment using resources of a different beam. This helps to redistribute load within the cell. The direct communication link can be refused if there are insufficient resources in the first beam, or if accepting the new terminal would cause quality of communication links with existing terminals to deteriorate.Type: ApplicationFiled: April 19, 2012Publication date: August 9, 2012Applicant: ROCKSTAR BIDCO LPInventors: James Naden, Fiona Wilson
-
Patent number: 8185044Abstract: A base station in a wireless communications system defines a plurality of beams which each have an amount of resources for supporting communication links with terminals. A control entity determines if a direct communication link can be supported between a new terminal and a base station using a first beam. If a direct communication link cannot be supported, a relaying equipment is used to provide a multi-hop path between the base station and the terminal. The multi-hop path comprises a link between the base station and the relaying equipment using resources of a different beam. This helps to redistribute load within the cell. The direct communication link can be refused if there are insufficient resources in the first beam, or if accepting the new terminal would cause quality of communication links with existing terminals to deteriorate.Type: GrantFiled: May 19, 2010Date of Patent: May 22, 2012Assignee: Rockstar Bidco LPInventors: James Naden, Fiona Wilson
-
Publication number: 20100246475Abstract: A wireless network includes a base station which can serve terminals directly, or via multi-hop transmission paths via relay stations. The base station transmits a downlink sub-frame which includes a first set of frame control information and a second set of frame control information. The second set of frame control information occupies a different position within the downlink sub-frame compared to the first set of frame control information. A relay station is able to transmit a downlink sub-frame to a terminal, or another relay station, while still being able to receive a set of frame control at a different time during the downlink sub-frame. The invention is especially useful in a wireless network in which the downlink transmissions of a base station and a relay station are synchronised to one another and where the downlink transmissions of a base station and relay station occupy the same, or similar, frequency bearer.Type: ApplicationFiled: October 23, 2007Publication date: September 30, 2010Inventors: James Naden, Gamini Senarath, David Steer
-
Publication number: 20100227620Abstract: A base station in a wireless communications system defines a plurality of beams which each have an amount of resources for supporting communication links with terminals. A control entity determines if a direct communication link can be supported between a new terminal and a base station using a first beam. If a direct communication link cannot be supported, a relaying equipment is used to provide a multi-hop path between the base station and the terminal. The multi-hop path comprises a link between the base station and the relaying equipment using resources of a different beam. This helps to redistribute load within the cell. The direct communication link can be refused if there are insufficient resources in the first beam, or if accepting the new terminal would cause quality of communication links with existing terminals to deteriorate.Type: ApplicationFiled: May 19, 2010Publication date: September 9, 2010Applicant: NORTEL NETWORKS LIMITEDInventors: James Naden, Fiona Wilson
-
Patent number: 7646752Abstract: Some embodiments of the invention provide an implementation for a multi-hop wireless backhaul network. These embodiments can advantageously be deployed in dense urban areas and/or co-located with wireless access nodes, such as base-stations of a cellular wireless communication system. Preferably wireless links between constituent network nodes are set-up hierarchically. A basic result of this is that peer-to-peer (child-to-child) communication is generally prohibited and circuits are forced to conform to a topology. The multi-hop wireless backhaul network may be used to carry delay sensitive, high-density last mile circuit traffic over Non-Line-Of-Sight (NLOS) broadband radio links. Moreover, some embodiments of the invention provide a method of path-healing for re-routing of circuit traffic from circuits that have experienced catastrophic failures.Type: GrantFiled: December 31, 2003Date of Patent: January 12, 2010Assignee: Nortel Networks LimitedInventors: Shalini Periyalwar, Hang Zhang, Glenn Algie, Peiying Zhu, Robert Matyas, Claude Royer, Bill Gage, James Naden, Alauddin Javed
-
Publication number: 20080025248Abstract: Methods, systems and apparatuses are provided for transmitting and receiving space-time block coded data in a wireless communications system with co-operative relays. A source node transmits RF signals representing first and second sets of data symbols in respective first and second channels (in time frequency code or any combination) of a wireless communications system, the first and second sets of data symbols being for transmission from separate antennas respectively according to a space-time block code. A relay node receives the RF signals representing the first set of data symbols in the first channel and transmits RF signals representing the first set of data symbols in the second channel. A destination node received the RF signals representing the second set of data symbols from the source node and the RF signals representing the first set of data symbols from the relay node.Type: ApplicationFiled: July 27, 2007Publication date: January 31, 2008Applicant: Nortel Networks LimitedInventor: James Naden
-
Publication number: 20070149236Abstract: Allocate power so as to maximise the throughput of each user of a multi-user MIMO group, with the constraint that over time all users in the group have equal throughput. This differs from equal capacity per slot in that each user may be assigned multiple slots as well as unequal power. This is illustrated in FIG. 4. Total throughput is maximised on any given slot for any two users. Power is shared between the spatial modes such that the total number of slots used by the two users is minimised. The membership of the MIMO group may change between slots and thus throughput is not necessarily equalised on a slot by slot basis.Type: ApplicationFiled: December 27, 2005Publication date: June 28, 2007Inventors: James Naden, Fiona Wilson