Patents by Inventor James O. Kiggans

James O. Kiggans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11898226
    Abstract: A method for additive manufacturing of a composite object containing a bonded network of boron carbide particles and aluminum occupying spaces between boron carbide particles, the method comprising: (i) producing a porous preform constructed of boron carbide by an additive manufacturing process in which particles of boron carbide are bonded together; and (ii) infiltrating molten aluminum, at a temperature of 1000-1400° C., into pores of said porous preform to produce said composite object constructed of boron carbide particles within an aluminum matrix, wherein the boron carbide is present in the composite object in an amount of 30-70 wt. %. The resulting composite material is also herein described.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: February 13, 2024
    Assignee: UT-Battelle, LLC
    Inventors: Corson L. Cramer, James O. Kiggans, Jr., Amelia M. Elliott, David C. Anderson
  • Patent number: 11724310
    Abstract: Disclosed herein are structures comprising a titanium, zirconium, or hafnium powder particle with titanium carbide, zirconium carbide, or hafnium carbide (respectively) nano-whiskers grown directly from and anchored to the powder particle. Also disclosed are methods for fabrication of such structures, involving heating the powder particles and exposing the particles to an organic gas.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: August 15, 2023
    Assignees: Consolidated Nuclear Security, LLC, UT-Battelle, LLC
    Inventors: Paul A. Menchhofer, Roland D. Seals, James O. Kiggans, Jr.
  • Patent number: 10850324
    Abstract: Disclosed herein are structures comprising a titanium, zirconium, or hafnium powder particle with titanium carbide, zirconium carbide, or hafnium carbide (respectively) nano-whiskers grown directly from and anchored to the powder particle. Also disclosed are methods for fabrication of such structures, involving heating the powder particles and exposing the particles to an organic gas.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: December 1, 2020
    Assignees: Consolidated Nuclear Security, LLC, UT-Battelle, LLC
    Inventors: Roland D. Seals, Paul A. Menchhofer, James O. Kiggans, Jr.
  • Publication number: 20200269318
    Abstract: A method for additive manufacturing of a composite object containing a bonded network of boron carbide particles and aluminum occupying spaces between boron carbide particles, the method comprising: (i) producing a porous preform constructed of boron carbide by an additive manufacturing process in which particles of boron carbide are bonded together; and (ii) infiltrating molten aluminum, at a temperature of 1000-1400° C., into pores of said porous preform to produce said composite object constructed of boron carbide particles within an aluminum matrix, wherein the boron carbide is present in the composite object in an amount of 30-70 wt. %. The resulting composite material is also herein described.
    Type: Application
    Filed: February 25, 2020
    Publication date: August 27, 2020
    Inventors: Corson L. Cramer, James O. Kiggans, JR., Amelia M. Elliott, David C. Anderson
  • Publication number: 20180195775
    Abstract: A method for forming a caloric regenerator includes forming a first caloric material stage from a first plurality of caloric material layers by repeatedly laying down a first powder for each layer of the first plurality of caloric material layers, applying a first binder material onto the first powder for each layer of the plurality of first caloric material layers, and then fixing the layers of the first plurality of caloric material layers to one another. A second caloric material stage is formed in a similar manner. The first and second caloric material stages are stackable to form the caloric regenerator.
    Type: Application
    Filed: January 11, 2017
    Publication date: July 12, 2018
    Inventors: Michael Goodman Schroeder, Michael Alexander Benedict, Ayyoub Mehdizadeh Momen, Amelia McDow Elliott, James O. Kiggans, JR.
  • Publication number: 20180154435
    Abstract: Disclosed herein are structures comprising a titanium, zirconium, or hafnium powder particle with titanium carbide, zirconium carbide, or hafnium carbide (respectively) nano-whiskers grown directly from and anchored to the powder particle. Also disclosed are methods for fabrication of such structures, involving heating the powder particles and exposing the particles to an organic gas.
    Type: Application
    Filed: January 30, 2018
    Publication date: June 7, 2018
    Inventors: Paul A. Menchhofer, Roland D. Seals, James O. Kiggans, JR.
  • Patent number: 9337470
    Abstract: A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: May 10, 2016
    Assignee: UT-BATTELLE, LLC
    Inventors: Beth L. Armstrong, Claus Daniel, Jane Y. Howe, James O. Kiggans, Jr., Adrian S. Sabau, David L. Wood, III, Sergiy Kalnaus
  • Publication number: 20150306570
    Abstract: A method of forming a metal-carbon composite, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a phenolic component, (ii) a crosslinkable aldehyde component, (iii) a polymerization catalyst, and (iv) metal-containing particles, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature of at least 300° C. for sufficient time to convert the precursor composition to said metal-carbon composite. The produced metal-carbon composite, devices incorporating them, and methods of their use (e.g., in capacitive deionization and lithium ion batteries) are also described.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 29, 2015
    Inventors: Richard T. Mayes, James O. Kiggans, Jr., Sheng Dai, David William DePaoli, Constantinos Tsouris, William H. Peter
  • Patent number: 8920622
    Abstract: An electrolyte system includes a reactor having a pair of electrodes that may sorb ions from an electrolyte. The electrolyte system also includes at least one power supply in electrical communication with the reactor. The at least one power supply may supply a DC signal and an AC signal to the pair of electrodes during sorption of the ions. In addition, the power supply may supply only the AC signal to the pair of electrodes during desorption of the ions.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: December 30, 2014
    Assignee: UT Battelle, LLC
    Inventors: David William DePaoli, James O. Kiggans, Jr., Costas Tsouris, William Bourcier, Robert Campbell, Richard T. Mayes
  • Patent number: 8445138
    Abstract: A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: May 21, 2013
    Assignee: UT-Battelle LLC
    Inventors: Edgar Lara-Curzio, Ke An, James O. Kiggans, Jr., Nancy J. Dudney, Cristian I. Contescu, Frederick S. Baker, Beth L. Armstrong
  • Publication number: 20130068630
    Abstract: An electrolyte system includes a reactor having a pair of electrodes that may sorb ions from an electrolyte. The electrolyte system also includes at least one power supply in electrical communication with the reactor. The at least one power supply may supply a DC signal and an AC signal to the pair of electrodes during sorption of the ions. In addition, the power supply may supply only the AC signal to the pair of electrodes during desorption of the ions.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Inventors: David William DePaoli, James O. Kiggans, JR., Costas Tsouris, William Bourcier, Robert Campbell, Richard T. Mayes
  • Publication number: 20130048500
    Abstract: A method of forming a carbon and titanium containing composite that includes mixing a titanium-containing powder with carbon and forming the mixture of the titanium-containing-powder and carbon into a composite structure at a temperature of less than 1500° C. The forming process provides a net shape having dimensions within 90% or greater than the final shape of the product. The binder of the composite is provided by the titanium, and the dispersed phase of the composite is provided by the carbon. The carbon and titanium containing composite may be employed as in applications including capacitive deionization (CDI), gas separation, chromatography, catalysis and electrode.
    Type: Application
    Filed: August 26, 2011
    Publication date: February 28, 2013
    Applicant: UT-BATTELLE, LLC
    Inventors: Craig A. Blue, Sheng Dai, David W. DePaoli, James O. Kiggans, JR., Richard T. Mayes, William H. Peter, Constantinos Tsouris
  • Publication number: 20120314831
    Abstract: A metal matrix, microencapsulated nuclear fuel component includes an integral metal matrix having an outer buffer region and an inner fuel containing region; a multiplicity of nuclear fuel capsules embedded in the fuel containing region of the matrix for encapsulating a nuclear fuel particle and products resulting from nuclear and chemical reactions; and a nuclear fuel particle encapsulated in each of the nuclear capsules.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 13, 2012
    Applicant: UT-BATTELLE, LLC
    Inventors: Kurt A. Terrani, James O. Kiggans, JR.
  • Publication number: 20110294008
    Abstract: A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).
    Type: Application
    Filed: July 19, 2011
    Publication date: December 1, 2011
    Inventors: Edgar Lara-Curzio, Ke An, James O. Kiggans, JR., Nancy J. Dudney, Cristian I. Contescu, Frederick S. Baker, Beth L. Armstrong
  • Patent number: 8017273
    Abstract: A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: September 13, 2011
    Assignee: UT-Battelle LLC
    Inventors: Edgar Lara-Curzio, Ke An, James O. Kiggans, Jr., Nancy J. Dudney, Cristian I. Contescu, Frederick S. Baker, Beth L. Armstrong
  • Patent number: 7754279
    Abstract: A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 ?m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: July 13, 2010
    Assignee: UT-Battelle, LLC
    Inventors: John T Simpson, Craig A Blue, James O Kiggans, Jr.
  • Publication number: 20090269666
    Abstract: A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).
    Type: Application
    Filed: April 28, 2008
    Publication date: October 29, 2009
    Inventors: Edgar Lara-Curzio, Ke An, James O. Kiggans, JR., Nancy J. Dudney, Cristian I. Contescu, Frederick S. Baker, Beth L. Armstrong
  • Publication number: 20090196990
    Abstract: A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 ?m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.
    Type: Application
    Filed: February 5, 2008
    Publication date: August 6, 2009
    Applicant: UT-Battelle, LLC
    Inventors: John T. Simpson, Craig A. Blue, James O. Kiggans, JR.
  • Patent number: 6579393
    Abstract: Systems and methods are described for loss dielectrics. A method of manufacturing a lossy dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer and then densifying together. The systems and methods provide advantages because the lossy dielectrics are less costly and more environmentally friendly than the available alternatives.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: June 17, 2003
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Terry N. Tiegs, James O. Kiggans, Jr.
  • Patent number: 6509808
    Abstract: Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: January 21, 2003
    Assignee: Lockhead Martin Energy Research
    Inventors: Terry N. Tiegs, James O. Kiggans, Jr.